
Security Overview of AWS
Lambda

An In-Depth Look at AWS Lambda Security

January 2021

This paper has been archived.

For the latest version of this document, see:

https://docs.aws.amazon.com/whitepapers/latest/
security-overview-aws-lambda/welcome.html

Archived

https://docs.aws.amazon.com/whitepapers/latest/security-overview-aws-lambda/welcome.html

Notices
Customers are responsible for making their own independent assessment of the
information in this document. This document: (a) is for informational purposes only, (b)
represents AWS’s current product offerings and practices, which are subject to change
without notice, and (c) does not create any commitments or assurances from AWS and
its affiliates, suppliers or licensors. AWS’s products or services are provided “as is”
without warranties, representations, or conditions of any kind, whether express or
implied. AWS’s responsibilities and liabilities to its customers are controlled by AWS
agreements, and this document is not part of, nor does it modify, any agreement
between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Archived

Contents
Abstract .. v

Introduction .. 1

About AWS Lambda .. 1

Benefits of Lambda ... 2

Cost for Running Lambda-Based Applications .. 3

The Shared Responsibility Model ... 3

Lambda Functions and Layers .. 4

Lambda Invoke Modes .. 5

Lambda Executions ... 6

Lambda Execution Environments ... 6

Execution Role .. 8

Lambda MicroVMs and Workers .. 8

Lambda Isolation Technologies .. 10

Storage and State ... 11

Runtime Maintenance in Lambda ... 11

Monitoring and Auditing Lambda Functions ... 12

Amazon CloudWatch .. 12

AWS CloudTrail ... 13

AWS X-Ray ... 13

AWS Config ... 13

Architecting and Operating Lambda Functions .. 13

Lambda and Compliance .. 14

Lambda Event Sources ... 14

Conclusion ... 15

Contributors ... 15

Further Reading ... 16

Document Revisions.. 16

Archived

Abstract
This whitepaper presents a deep dive into the AWS Lambda service through a security
lens. It provides a well-rounded picture of the service, which is useful for new adopters,
and deepens understanding of Lambda for current users.

The intended audience for this whitepaper is Chief Information Security Officers
(CISOs), information security groups, security engineers, enterprise architects,
compliance teams, and any others interested in understanding the underpinnings of
AWS Lambda.

Archived

https://aws.amazon.com/lambda/

Amazon Web Services Security Overview of AWS Lambda

 Page 1

Introduction
Today, more workloads use AWS Lambda to achieve scalability, performance, and cost
efficiency, without managing the underlying computing. These workloads scale to
thousands of concurrent requests per second. Lambda is used by hundreds of
thousands of Amazon Web Services (AWS) customers to serve trillions of requests
every month.

Lambda is suitable for mission critical applications in many industries. A broad variety of
customers, from media and entertainment to financial services and other regulated
industries, take advantage of Lambda. These customers decrease time to market,
optimize costs, and improve agility by focusing on what they do best: running their
business.

The managed runtime environment model enables Lambda to manage much of the
implementation details of running serverless workloads. This model further reduces the
attack surface while making cloud security simpler. This whitepaper presents the
underpinnings of that model, along with best practices, to developers, security analysts,
security and compliance teams, and other stakeholders.

About AWS Lambda
Lambda is an event-driven, serverless compute service that extends other AWS
services with custom logic, or creates backend services that operate with scale,
performance, and security in mind. Lambda can be configured to automatically run code
in response to multiple events, such as HTTP requests through Amazon API Gateway,
modifications to objects in Amazon Simple Storage Service (Amazon S3) buckets, table
updates in Amazon DynamoDB, and state transitions in AWS Step Functions. Lambda
runs code on a highly available compute infrastructure and performs all the
administration of the underlying platform, including server and operating system
maintenance, capacity provisioning and automatic scaling, patching, code monitoring,
and logging.

With Lambda, you can just upload your code and configure when to invoke it; Lambda
takes care of everything else required to run your code. Lambda integrates with many
other AWS services, and enables you to create serverless applications or backend
services, ranging from periodically triggered, simple automation tasks to full-fledged
microservices applications.

Lambda can be configured to access resources within your Amazon Virtual Private
Cloud (Amazon VPC), and by extension, your on-premises resources.

Lambda integrates with AWS Identity and Access Management (IAM), which you can
leverage to protect your data and configure fine-grained access controls using a variety

Archived

https://aws.amazon.com/lambda/
https://software.intel.com/content/www/us/en/develop/articles/what-managed-runtime-environments-mrtes-mean-to-you.html
https://aws.amazon.com/serverless/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/iam/

Amazon Web Services Security Overview of AWS Lambda

 Page 2

of access management strategies, while maintaining a high level of security and
auditing to help you meet your compliance needs.

Benefits of Lambda

Customers who want to unleash the creativity and speed of their development
organizations without compromising their IT team’s ability to provide a scalable, cost-
effective, and manageable infrastructure, find that Lambda lets them trade operational
complexity for agility and better pricing, without compromising on scale or reliability.

Lambda offers many benefits, including the following:

No Servers to Manage

Lambda runs your code on highly available, fault-tolerant infrastructure spread across
multiple Availability Zones (AZs) in a single Region, seamlessly deploying code, and
providing all the administration, maintenance, and patches of the infrastructure. Lambda
also provides built-in logging and monitoring, including integration with Amazon
CloudWatch, CloudWatch Logs, and AWS CloudTrail.

Continuous Scaling

Lambda precisely manages scaling of your functions (or application) by running event-
triggered code in parallel, and processing each event individually.

Millisecond Metering

With Lambda, you are charged for every 1 millisecond (ms) your code executes, and
the number of times your code is triggered. You pay for consistent throughput or
execution duration, instead of by server unit.

Increases Innovation

Lambda frees up your programming resources by taking over the infrastructure
management, allowing you to focus on innovation and development of business logic.

Modernize your Applications

Lambda enables you to use functions with pre-trained machine learning models to inject
artificial intelligence into applications easily. A single application programming interface
(API) request can classify images, analyze videos, convert speech to text, perform
natural language processing, and more.

Archived

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/Welcome.html
https://aws.amazon.com/cloudtrail/

Amazon Web Services Security Overview of AWS Lambda

 Page 3

Rich Ecosystem

Lambda supports developers through AWS Serverless Application Repository for
discovering, deploying and publishing serverless applications, AWS Serverless
Application Model for building serverless applications and integrations with various
integrated development environments (IDEs) like AWS Cloud9, AWS Toolkit for Visual
Studio, AWS Tools for Visual Studio Team Services, and several others. Lambda is
integrated with additional AWS services to provide you a rich ecosystem for building
serverless applications.

Cost for Running Lambda-Based Applications

Lambda offers a granular, pay-as-you-go pricing model. With this model, you are
charged based on the number of function invocations and their duration (the time it
takes for the code to run). In addition to this flexible pricing model, Lambda also offers 1
million perpetually free requests per month, which enables many customers to automate
their process without any costs.

The Shared Responsibility Model
At AWS, security and compliance is a shared responsibility between AWS and the
customer. This shared responsibility model can help relieve your operational burden, as
AWS operates, manages, and controls the components from the host operating system
and virtualization layer, down to the physical security of the facilities in which the service
operates.

For Lambda, AWS manages the underlying infrastructure and application platform, the
operating system, and the execution environment. You are responsible for the security
of your code and identity and access management (IAM) to the Lambda service and
within your function.

Figure 1 shows the shared responsibility model as it applies to the common and distinct
components of Lambda. AWS responsibilities appear in orange, and customer
responsibilities appear in blue. Archived

https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/vsts/
https://aws.amazon.com/blogs/aws/new-aws-toolkits-for-pycharm-intellij-preview-and-visual-studio-code-preview/
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Web Services Security Overview of AWS Lambda

 Page 4

Figure 1 – Shared Responsibility Model for AWS Lambda

Lambda Functions and Layers
With Lambda, you can run code virtually with zero administration of the underlying
infrastructure. You are responsible only for the code that you provide Lambda, and the
configuration of how Lambda runs that code on your behalf. Today, Lambda supports
two types of code resources: Functions and Layers.

A function is a resource which can be invoked to run your code in Lambda. Functions
can include a common, or shared, resource called Layers. Layers can be used to share
common code or data across different functions or AWS accounts. You are responsible
for the management of all the code contained within your functions or layers. When
Lambda receives the function or layer code from a customer, Lambda protects access
to it by encrypting it at-rest using AWS Key Management Service (AWS KMS) and in-
transit by using TLS 1.2+.

You can manage access to your functions and layers through AWS IAM policies, or
through resource-based permissions. For a full list of supported IAM features on
Lambda, see AWS Services that work with IAM.

You can also control the entire lifecycle of your functions and layers through Lambda's
control plane APIs. For example, you can choose to delete your function by calling
DeleteFunction, or revoke permissions from another account by calling

RemovePermission.

Archived

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

Amazon Web Services Security Overview of AWS Lambda

 Page 5

Lambda Invoke Modes
The Invoke API can be called in two modes: event mode and request-response mode.

• Event mode queues the payload for an asynchronous invocation.

• Request-response mode synchronously invokes the function with the provided
payload and returns a response immediately.

In both cases, the function execution is always performed in a Lambda execution
environment, but the payload takes different paths. For more information, see Lambda
Execution Environments in this document.

You can also use other AWS services that perform invocations on your behalf. Which
invoke mode is used depends on which AWS service you are using, and how it is
configured. For additional information on how other AWS services integrate with
Lambda, see Using AWS Lambda with other services.

When Lambda receives a request-response invoke, it is passed to the invoke service
directly. If the invoke service is unavailable, callers may temporarily queue the payload
client-side to retry the invocation a set number of times. If the invoke service receives
the payload, the service then attempts to identify an available execution environment for
the request, and passes the payload to that execution environment to complete the
invocation. If no existing or appropriate execution environments exist, one will be
dynamically created in response to the request. While in-transit, invoke payloads sent to
the invoke service are secured with TLS 1.2+. Traffic within the Lambda service (from
the load balancer down) passes through an isolated internal virtual private cloud (VPC),
owned by the Lambda service, within the AWS Region to which the request was sent.

Figure 2 – Invocation model for AWS Lambda: request-response

Event invocation mode payloads are always queued for processing before invocation.
All payloads are queued for processing in an Amazon Simple Queue Service (Amazon
SQS) queue. Queued events are always secured in-transit with TLS 1.2+, but they are
not currently encrypted at-rest. The Amazon SQS queues used by Lambda are
managed by the Lambda service, and are not visible to you as a customer. Queued
events can be stored in a shared queue, but may be migrated or assigned to dedicated
queues depending on a number of factors that cannot be directly controlled by
customers (for example, rate of invoke, size of events, and so on).

Archived

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://aws.amazon.com/sqs/

Amazon Web Services Security Overview of AWS Lambda

 Page 6

Queued events are retrieved in batches by Lambda’s poller fleet. The poller fleet is a
group of EC2 instances whose purpose is to process queued event invocations which
have not yet been processed. When the poller fleet retrieves a queued event that it
needs to process, it does so by passing it to the invoke service just like a customer
would in a request-response mode invoke.

If the invocation cannot be performed, the poller fleet will temporarily store the event, in-
memory, on the host until it is either able to successfully complete the execution, or until
the number of run retry attempts have been exceeded. No payload data is ever written
to disk on the poller fleet itself. The polling fleet can be tasked across AWS customers,
allowing for the shortest time to invocation. For more information about which services
may take the event invocation mode, see Using AWS Lambda with other services.

Lambda Executions
When Lambda executes a function on your behalf, it manages both provisioning and
configuring the underlying systems necessary to run your code. This enables your
developers to focus on business logic and writing code, not administering and managing
underlying systems.

The Lambda service is split into the control plane and the data plane. Each plane
serves a distinct purpose in the service. The control plane provides the management
APIs (for example, CreateFunction, UpdateFunctionCode, PublishLayerVersion,

and so on), and manages integrations with all AWS services. Communications to
Lambda's control plane are protected in-transit by TLS. All customer data stored within
Lambda's control plane is encrypted at-rest through the use of AWS KMS, which is
designed to protect it from unauthorized disclosure or tampering.

The data plane is Lambda's Invoke API that triggers the invocation of Lambda

functions. When a Lambda function is invoked, the data plane allocates an execution
environment on an AWS Lambda Worker (or simply Worker, a type of Amazon EC2
instance) to that function version, or chooses an existing execution environment that
has already been set up for that function version, which it then uses to complete the
invocation. For more information, see the AWS Lambda MicroVMs and Workers section
of this document.

Lambda Execution Environments

Each invocation is routed by Lambda's invoke service to an execution environment on a
Worker that is able to service the request. Other than through data plane, customers
and other users cannot directly initiate inbound/ingress network communications with an
execution environment. This helps to ensure that communications to your execution
environment are authenticated and authorized.

Archived

https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://aws.amazon.com/ec2/

Amazon Web Services Security Overview of AWS Lambda

 Page 7

Execution environments are reserved for a specific function version and cannot be
reused across function versions, functions, or AWS accounts. This means a single
function which may have two different versions would result in at least two unique
execution environments.

Each execution environment may only be used for one concurrent invocation at a time,
and they may be reused across multiple invocations of the same function version for
performance reasons. Depending on a number of factors (for example, rate of
invocation, function configuration, and so on), one or more execution environments may
exist for a given function version. With this approach, Lambda is able to provide function
version level isolation for its customers.

Lambda does not currently isolate invokes within a function version’s execution
environment. What this means is that one invoke may leave a state that may affect the
next invoke (for example, files written to /tmp or data in-memory). If you want to

ensure that one invoke cannot affect another invoke, Lambda recommends that you
create additional distinct functions. For example, you could create distinct functions for
complex parsing operations which are more error prone, and re-use functions which do
not perform security sensitive operations. Lambda does not currently limit the number of
functions that customers can create. For more information about limits, see the Lambda
quotas page.

Execution environments are continuously monitored and managed by Lambda, and they
may be created or destroyed for any number of reasons including, but not limited to:

• A new invoke arrives and no suitable execution environment exists

• An internal runtime or Worker software deployment occurs

• A new provisioned concurrency configuration is published

• The lease time on the execution environment, or the Worker, is approaching or has
exceeded max lifetime

• Other internal workload rebalancing processes

Customers can manage the number of pre-provisioned execution environments that
exist for a function version by configuring provisioned concurrency on their function
configuration. When configured to do so, Lambda will create, manage and ensure the
configured number of execution environments always exist. This ensures that
customers have greater control over start-up performance of their serverless
applications at any scale.

Other than through a provisioned concurrency configuration, customers cannot
deterministically control the number of execution environments that are created or
managed by Lambda in response to invocations.

Archived

https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html

Amazon Web Services Security Overview of AWS Lambda

 Page 8

Execution Role

Each Lambda function must also be configured with an execution role, which is an IAM
role that is assumed by the Lambda service when performing control plane and data
plane operations related to the function. The Lambda service assumes this role to fetch
temporary security credentials which are then available as environment variables during
a function’s invocation. For performance reasons, the Lambda service will cache these
credentials, and may re-use them across different execution environments which use
the same execution role.

To ensure adherence to least privilege principle, Lambda recommends that each
function has its own unique role, and that it is configured with the minimum set of
permissions it requires.

The Lambda service may also assume the execution role to perform certain control
plane operations such as those related to creating and configuring Elastic network
interfaces (ENI) for VPC functions, sending logs to Amazon CloudWatch, sending
traces to AWS X-Ray, or other non-invoke related operations. Customers can always
review and audit these use cases by reviewing audit logs in AWS CloudTrail.

For more information on this subject, see the AWS Lambda execution role
documentation page.

Lambda MicroVMs and Workers

Lambda will create its execution environments on a fleet of EC2 instances called AWS
Lambda Workers. Workers are bare metal EC2 Nitro instances which are launched and
managed by Lambda in a separate isolated AWS account which is not visible to
customers. Workers have one or more hardware-virtualized Micro Virtual Machines
(MVM) created by Firecracker. Firecracker is an open-source Virtual Machine Monitor
(VMM) that uses Linux’s Kernel-based Virtual Machine (KVM) to create and manage
MVMs. It is purpose-built for creating and managing secure, multi-tenant container and
function-based services that provide serverless operational models. For more
information about Firecracker's security model, see the Firecracker project website.

As a part of the shared responsibility model, Lambda is responsible for maintaining the
security configuration, controls, and patching level of the Workers. The Lambda team
uses AWS Inspector to discover known potential security issues, as well as other
custom security issue notification mechanisms and pre-disclosure lists, so that
customers don’t need to manage the underlying security posture of their execution
environment.

Archived

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://searchservervirtualization.techtarget.com/definition/bare-metal-environment
https://aws.amazon.com/ec2/nitro/
https://firecracker-microvm.github.io/
https://aws.amazon.com/inspector/

Amazon Web Services Security Overview of AWS Lambda

 Page 9

Figure 3 – Isolation model for AWS Lambda Workers

Workers have a maximum lease lifetime of 14 hours. When a Worker approaches
maximum lease time, no further invocations are routed to it, MVMs are gracefully
terminated, and the underlying Worker instance is terminated. Lambda continuously
monitors and alarms on lifecycle activities of its fleet’s lifetime.

All data plane communications to workers are encrypted using Advanced Encryption
Standard with Galois/Counter Mode (AES-GCM). Other than through data plane
operations, customers cannot directly interact with a worker as it hosted in a network
isolated Amazon VPC managed by Lambda in Lambda’s service accounts.

When a Worker needs to create a new execution environment, it is given time-limited
authorization to access customer function artifacts. These artifacts are specifically
optimized for Lambda’s execution environment and workers. Function code which is
uploaded using the ZIP format is optimized once, and then is stored in an encrypted
format using an AWS-managed key and AES-GCM.

Functions uploaded to Lambda using the container image format are also optimized.
The container image is first downloaded from its original source, optimized into distinct
chunks, and then stored as encrypted chunks using an authenticated convergent
encryption method which uses a combination of AES-CTR, AES-GCM, and a SHA-256
MAC. The convergent encryption method allows Lambda to securely deduplicate
encrypted chunks. All keys required to decrypt customer data is protected using
customer-managed KMS Customer Master Key (CMK). CMK usage by the Lambda
service is available to customers in AWS CloudTrail logs for tracking and auditing.

Archived

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_(CTR)
https://en.wikipedia.org/wiki/HMAC
https://en.wikipedia.org/wiki/HMAC
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/cloudtrail/

Amazon Web Services Security Overview of AWS Lambda

 Page 10

Lambda Isolation Technologies
Lambda uses a variety of open-source and proprietary isolation technologies to protect
Workers and execution environments. Each execution environment contains a
dedicated copy of the following items:

• The code of the particular function version

• Any AWS Lambda Layers selected for your function version

• The chosen function runtime (for example, Java 11, NodeJS 12, Python 3.8, and so

on) or the function's custom runtime

• A writeable /tmp directory

• A minimal Linux user space based on Amazon Linux 2

Execution environments are isolated from one another using several container-like
technologies built into the Linux kernel, along with AWS proprietary isolation
technologies. These technologies include:

• cgroups – Used to constrain the function's access to CPU and memory.

• namespaces – Each execution environment runs in a dedicated namespace. We do

this by having unique group process IDs, user IDs, network interfaces, and other

resources managed by the Linux kernel.

• seccomp-bpf – To limit the system calls (syscalls) that can be used from within the

execution environment.

• iptables and routing tables – To prevent ingress network communications and to

isolate network connections between MVMs.

• chroot – Provide scoped access to the underlying filesystem.

• Firecracker configuration – Used to rate limit block device and network device

throughput

• Firecracker security features – For more information about Firecracker's current

security design, please review Firecracker's latest design document.

Along with AWS proprietary isolation technologies, these mechanisms provide strong
isolation between execution environments.

Archived

https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://en.wikipedia.org/wiki/User_space
https://aws.amazon.com/amazon-linux/
https://en.wikipedia.org/wiki/Cgroups
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Seccomp
https://en.wikipedia.org/wiki/Iptables
https://en.wikipedia.org/wiki/Routing_table
https://wiki.archlinux.org/index.php/chroot
https://github.com/firecracker-microvm/firecracker/blob/master/docs/design.md

Amazon Web Services Security Overview of AWS Lambda

 Page 11

Storage and State

Execution environments are never reused across different function versions or
customers, but a single environment can be reused between invocations of the same
function version. This means data and state can persist between invocations. Data
and/or state may continue to persist for hours before it is destroyed as a part of normal
execution environment lifecycle management. For performance reasons, functions can
take advantage of this behavior to improve efficiency by keeping and reusing local
caches or long-lived connections between invocations. Inside an execution
environment, these multiple invocations are handled by a single process, so any
process-wide state (such as a static state in Java) can be available for future
invocations to reuse, if the invocation occurs on a reused execution environment.

Each Lambda execution environment also includes a writeable filesystem, available at
/tmp. This storage is not accessible or shared across execution environments. As with

the process state, files written to /tmp remain for the lifetime of the execution

environment. This allows expensive transfer operations, such as downloading machine
learning (ML) models, to be amortized across multiple invocations. Functions that don’t
want to persist data between invocations should either not write to /tmp, or delete their

files from /tmp between invocations. The /tmp directory is backed by an EC2 instance

store and is encrypted at-rest.

Customers that want to persist data to the file system outside of the execution
environment should consider using Lambda’s integration with Amazon Elastic File
System (Amazon EFS). For more information, see Using Amazon EFS with AWS
Lambda.

If customers don’t want to persist data or state across invocations, Lambda
recommends that they do not use the execution context or execution environment to
store data or state. If customers want to actively prevent data or state leaking across
invocations, Lambda recommends that they create distinct functions for each state.
Lambda does not recommend that customers use or store security sensitive state into
the execution environment, as it may be mutated between invocations. We recommend
recalculating the state on each invocation instead.

Runtime Maintenance in Lambda
Lambda provides support for multiple programming languages through the use of
runtimes, including Java 11, Python 3.8, Go 1.x, NodeJS 12, .NET core 3.1, and others.
For a complete list of currently supported runtimes, see AWS Lambda Runtimes.

Lambda provides support for these runtimes by continuously scanning for and deploying
compatible updates and security patches, and by performing other runtime maintenance
activity. This enables customers to focus on just the maintenance and security of any
code included in their Function and Layer. The Lambda team uses AWS Inspector to

Archived

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://aws.amazon.com/inspector/

Amazon Web Services Security Overview of AWS Lambda

 Page 12

discover known security issues, as well as other custom security issues notification
mechanisms and pre-disclosure lists to ensure that our runtime languages and
execution environment remain patched. If any new patches or updates are identified,
Lambda tests and deploys the runtime updates without any involvement from
customers. For more information about Lambda's compliance program, see the Lambda
and Compliance section of this document.

Typically, no action is required to pick up the latest patches for supported Lambda
runtimes, but sometimes action might be required to test patches before they are
deployed (for example, known incompatible runtime patches). If any action is required
by customers, Lambda will contact them through the Personal Health Dashboard,
through the AWS account's email, or through other means, with the specific actions
required to be taken.

Customers can use other programming languages in Lambda by implementing a
custom runtime. For custom runtimes, maintenance of the runtime becomes the
customer's responsibility, including making sure that the custom runtime includes the
latest security patches. For more information, see Custom AWS Lambda runtimes in the
AWS Lambda Developer Guide.

When upstream runtime language maintainers mark their language End-Of-Life (EOL),
Lambda honors this by no longer supporting the runtime language version. When
runtime versions are marked as deprecated in Lambda, Lambda stops supporting the
creation of new functions and updates to existing functions that were authored in the
deprecated runtime. To alert customer of upcoming runtime deprecations, Lambda
sends out notifications to customers of the upcoming deprecation date, and what they
can expect. Lambda does not provide security updates, technical support, or hotfixes for
deprecated runtimes, and reserves the right to disable invocations of functions
configured to run on a deprecated runtime at any time. If customers want to continue to
run deprecated or unsupported runtime versions, they can create their own custom
AWS Lambda runtime. For details on when runtimes are deprecated, see the AWS
Lambda Runtime support policy.

Monitoring and Auditing Lambda Functions
You can monitor and audit Lambda functions with many AWS services and methods,
including the following services:

Amazon CloudWatch

Lambda automatically monitors Lambda functions on your behalf. Through Amazon
CloudWatch, it reports metrics such as the number of requests, the execution duration
per request, and the number of requests resulting in an error. These metrics are
exposed at the function level, which you can then leverage to set CloudWatch alarms.

Archived

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/

Amazon Web Services Security Overview of AWS Lambda

 Page 13

For a list of metrics exposed by Lambda, see Working with AWS Lambda function
metrics.

AWS CloudTrail

Using AWS CloudTrail, you can implement governance, compliance, operational
auditing, and risk auditing of your entire AWS account, including Lambda. CloudTrail
enables you to log, continuously monitor, and retain account activity related to actions
across your AWS infrastructure, providing a complete event history of actions taken
through the AWS Management Console, AWS SDKs, command line tools, and other
AWS services. Using CloudTrail, you can optionally encrypt log files using KMS and
also leverage CloudTrail log file integrity validation for positive assertion.

AWS X-Ray

Using AWS X-Ray, you can analyze and debug production and distributed Lambda-
based applications, which enables you to understand the performance of your
application and its underlying services, so you can eventually identify and troubleshoot
the root cause of performance issues and errors. X-Ray’s end-to-end view of requests
as they travel through your application shows a map of the application’s underlying
components, so you can analyze applications during development and in production.

AWS Config

With AWS Config, you can track configuration changes to the Lambda functions
(including deleted functions), runtime environments, tags, handler name, code size,
memory allocation, timeout settings, and concurrency settings, along with Lambda IAM
execution role, subnet, and security group associations. This gives you a holistic view of
the Lambda function’s lifecycle and enables you to surface that data for potential audit
and compliance requirements.

Architecting and Operating Lambda Functions
Now that we have discussed the foundations of the Lambda service, we move on to
architecture and operations. For information about standard best practices for
serverless applications, see the Serverless Application Lens whitepaper, which defines
and explores the pillars of the AWS Well Architected Framework in a Serverless
context.

• Operational Excellence Pillar – The ability to run and monitor systems to
deliver business value and to continually improve supporting processes and
procedures.

Archived

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-metrics.html
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/console/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-validation-intro.html
https://aws.amazon.com/xray/
https://aws.amazon.com/config/
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://aws.amazon.com/architecture/well-architected/

Amazon Web Services Security Overview of AWS Lambda

 Page 14

• Security Pillar – The ability to protect information, systems, and assets while
delivering business value through risk assessment and mitigation strategies.

• Reliability Pillar – The ability of a system to recover from infrastructure or
service disruptions, dynamically acquire computing resources to meet demand,
and mitigate disruptions such as misconfigurations or transient network issues.

• Performance Efficiency Pillar – The efficient use of computing resources to

meet requirements and the maintenance of that efficiency as demand changes

and technologies evolve.

The Serverless Application Lens whitepaper includes topics such as logging metrics
and alarming, throttling and limits, assigning permissions to Lambda functions, and
making sensitive data available to Lambda functions.

Lambda and Compliance
As mentioned in The Shared Responsibility Model section of this document, you are
responsible for determining which compliance regime applies to your data. After you
have determined your compliance regime needs, you can use the various Lambda
features to match those controls. You can contact AWS experts (such as solution
architects, domain experts, technical account managers, and other human resources)
for assistance. However, AWS cannot advise customers on whether (or which)
compliance regimes are applicable to a particular use case.

As of November 2020, Lambda is in scope for SOC 1, SOC 2, and SOC 3 reports,
which are independent third-party examination reports that demonstrate how AWS
achieves key compliance controls and objectives. In addition, Lambda maintains
compliance with PCI DSS and the U.S. Health Insurance Portability and Accountability
Act (HIPAA), among other compliance programs. For an up-to-date list of compliance
information, see the AWS Services in Scope by Compliance Program page.

Because of the sensitive nature of some compliance reports, they cannot be shared
publicly. For access to these reports, you can sign in to your AWS console and use
AWS Artifact, a no cost, self-service portal, for on-demand access to AWS compliance
reports.

Lambda Event Sources
Lambda integrates with more than 140 AWS services via direct integration and the
Amazon EventBridge event bus. The commonly used Lambda event sources are:

• Amazon API Gateway

• Amazon CloudWatch Events

Archived

https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/artifact/
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-event-bus.html
https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html

Amazon Web Services Security Overview of AWS Lambda

 Page 15

• Amazon CloudWatch Logs

• Amazon DynamoDB Streams

• Amazon EventBridge

• Amazon Kinesis Data Streams

• Amazon S3

• Amazon SNS

• Amazon SQS

• AWS Step Functions

With these event sources, you can:

• Use AWS IAM to manage access to the service and resources securely.

• Encrypt your data at-rest1. All services encrypt data in transit.

• Access from your Amazon VPC using VPC endpoints (powered by AWS
PrivateLink).

• Use Amazon CloudWatch to collect, report, and alarm on metrics.

• Use AWS CloudTrail to log, continuously monitor, and retain account activity related
to actions across your AWS infrastructure, providing a complete event history of
actions taken through the AWS Management Console, AWS SDKs, command line
tools, and other AWS services.

Conclusion
AWS Lambda offers a powerful toolkit for building secure and scalable applications.
Many of the best practices for security and compliance in Lambda are the same as in all
AWS services, but some are particular to Lambda. This whitepaper describes the
benefits of Lambda, its suitability for applications, and the Lambda-managed runtime
environment. It also includes information about monitoring and auditing, and security
and compliance best practices. As you think about your next implementation, consider
what you learned about Lambda, and how it might improve your next workload solution.

Contributors
Contributors to this document include:

• Mayank Thakkar, Senior Solutions Architect

Archived

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
https://aws.amazon.com/eventbridge/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/s3/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
https://aws.amazon.com/iam/
https://aws.amazon.com/vpc/
https://aws.amazon.com/privatelink/
https://aws.amazon.com/privatelink/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/console/
https://aws.amazon.com/tools/

Amazon Web Services Security Overview of AWS Lambda

 Page 16

• Marc Brooker, Senior Principal Engineer

• Osman Surkatty, Senior Security Engineer

Further Reading
For additional information, see:

• Shared Responsibility Model, which explains how AWS thinks about security in

general.

• Security best practices in IAM, which covers recommendations for AWS Identity and

Access Management (IAM) service.

• Serverless Application Lens covers the AWS well-architected framework and

identifies key elements to help ensure your workloads are architected according to

best practices.

• Introduction to AWS Security provides a broad introduction to thinking about security

in AWS.

• Amazon Web Services: Risk and Compliance provides an overview of compliance in

AWS.

Document Revisions

Date Description

March 2019 First publication

January 2021 Re-published with significant updates

Notes
1 At the time of publishing, encryption of data at-rest was not available for Amazon

EventBridge. Continue to monitor the service homepages for updates on these
capabilities.

Archived

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-Applications-Lens.pdf
https://d1.awsstatic.com/whitepapers/Security/Intro_to_AWS_Security.pdf
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf

	Abstract
	Introduction
	About AWS Lambda
	Benefits of Lambda
	No Servers to Manage
	Continuous Scaling
	Millisecond Metering
	Increases Innovation
	Modernize your Applications
	Rich Ecosystem

	Cost for Running Lambda-Based Applications

	The Shared Responsibility Model
	Lambda Functions and Layers
	Lambda Invoke Modes
	Lambda Executions
	Lambda Execution Environments
	Execution Role
	Lambda MicroVMs and Workers

	Lambda Isolation Technologies
	Storage and State

	Runtime Maintenance in Lambda
	Monitoring and Auditing Lambda Functions
	Amazon CloudWatch
	AWS CloudTrail
	AWS X-Ray
	AWS Config

	Architecting and Operating Lambda Functions
	Lambda and Compliance
	Lambda Event Sources
	Conclusion
	Contributors
	Further Reading
	Document Revisions

