

Getting DevOps off the Ground
An Ubuntu + SaltStack + gitfs + PXE Infrastructure Build

Chris Malone
Nuvation

https://www.nuvation.com/

Table Of Contents

Foreword 9
Content Summary 9
Intended Audience 9
tl;dr 9
License 9

Introduction 10
The Promise of DevOps 10
Goals 11

Unified, piecewise documentation 11
Repeatable deployment 11
Host agnostic 11
Rapid development 11

Building Blocks 12
Development 14

Approach to Development 14
Deployment Methods 14

The Approach: Layering 15

Part I: Manual Build of Salt Base 17
VMWare Workstation Player 18

Why Player 18
Install VMWare Workstation Player 18
Building the Development VM 18

Ubuntu 18
Why Ubuntu 19
Installation media 19

Mounting the ISO 19
Manual Install vs preseed file 19
Manual Install Process 19
Basic OS Setup 20

SaltStack 20
Why SaltStack 21
Installing SaltStack 22

Apt source changes 22
Installation of packages 22

Configure VM as Self-Mastered 22
Build basic Salt Master Config 23

Testing the SaltBase Machine 24
Build and apply a basic formula 24

gitfs 25
Why gitfs 26
The pygit2 problem 27

Solution: Compile from source 27
Test and verify 28
Add config changes for gitfs 28

Apply a state from a gitfs source 30
Future considerations 31

Save Point: Export SaltBase to .ova 32
Creating a universal OVA template on Windows 32
Exporting the OVA Appliance on Windows 32

The First Finish Line 33

Part II: Manual Build of PXE Server 34
What is PXE 35
SaltBase Manual Deployment 35
PXE Server Prerequisites 36

Static IP 36
tftpd-hpa 37
PXE Server Bootstrap Files 37

External Prerequisites 39
DHCP Server 39
DHCP Server Changes 40

Linux DHCP Scope Options 40
Windows DHCP Scope Options 40
What about DHCP scope option 060? 40

First menu 41
Build a Basic Menu 41
Testing the Basic Menu 42

Ubuntu 16.04 x64 Server ISO + Config 43
Get and Mount the ISO image 43
SaltBase Bootstrap files 44

Automated Ubuntu install using Preseed File 45
What can be completed in preseed? 45
Add the saltbase_install folder 45

Apt source file 46
Build the Preseed File 46
Drop the preseed file and dependent files into place 52
Understanding the difference in salt-master configuration files 53

Complete Configuration Using Salt 54
What remains to be completed? 54
Build the SaltBase_Install Formula 54
Drop the saltbase_install.sls salt formula into place 57
Drop the helper scripts into place 58
Drop the salt config files into place 58

Add Ubuntu 16.04 x64 Server SaltBase to the PXE Boot Menu 59
Testing the Installation of an Ubuntu 16.04 x64 Server SaltBase machine via PXE 60
Understanding the SaltBase Install over PXE 61
Detailing the SaltBase Build over PXE 63
Graphing the SaltBase Build over PXE 65
Save Point: Export PXE Server to .ova 66

Creating a universal OVA template on Windows 66
Exporting the OVA Appliance on Windows 66

The second finish line 67

Part III: DevOps Development Cycle 68
Approach to Development 69
Step 1: Auto Deploy a SaltBase Image 69
Step 2: Setup the machine 70

setupnetwork.sh 70
enable_ssh.sh 70
newsalthostname.sh 70

Step 3: Setup development and external formulas 71
Create an empty git repo 71
Setup a local development environment 71
Build and Test 72
Add an external formula 73

Step 4: Iterate 74
Build, Test, Add, Commit 74
Push 75

Step 5: Validate 76
Why Validate? 76
Auto Deploy 76
Setup 76

Add Development Formula and Test 76
Overview 77
Deployment Methods 79

Deploying to a VM 79
Deploying to Bare Metal 79
Creating an .ova template 79

PXE Feature Add 80
Memtest 81

memtest.bin 81
Add Memtest to the PXE Boot Menu 81
Test Memtest PXE Boot 82

Older Ubuntu Version 83
Ubuntu 14.04 x64 Server ISO + Config 83

Get and Mount the ISO image 83
SaltBase Bootstrap files 84

Apt source file 85
Automated Ubuntu install using Preseed File 85

Drop the Preseed File into place 86
Complete Configuration Using the SaltBase_Install Formula 87
Adding Ubuntu 14.04 x64 Server SaltBase to the PXE Boot Menu 87
Testing the Installation of an Ubuntu 14.04 x64 Server SaltBase machine via PXE 89

Live Boot Ubuntu 16.04 x64 Desktop 90
Ubuntu 16.04 x64 Desktop ISO + Config 90

Get and Mount the ISO image 90
SaltBase Bootstrap files 91

NFS Config + .bashrc 91
Install and Configure nfs 91
Fix the nfs mount in the PXE boot menu with .bashrc 92

Add Ubuntu 16.04 x64 Live Boot to the PXE Boot Menu 92
Test Live Boot of Ubuntu 16.04 x64 using PXE 94

Dogfooding: SaltStack build of PXE 95
The SaltBase PXE Server File Tree 95
Migrating PXE from manual to auto deployment 96

Salt for PXE server (init.sls) 96
Salt: PXE Package Install 96
Salt: Configure the TFTP Server 96
Salt: Ubuntu 16.04 Live Boot 97
Salt: Ubuntu 16.04 Server SaltBase 99

Salt: Ubuntu 14.04 Server SaltBase 101
Salt: Memtest Boot 102
Salt: NFS Configuration 103
Salt: PXE Boot Menu & Bootstrap Files 104
Salt: Add the Salt Config files and Formula to PXE 105
Salt: Helper Scripts 107
Salt: .bashrc 108

PXE boot menu (default) 109
Preseed files (ub1604x64server.preseed & ub1404x64server.preseed) 109
.bashrc 111
salt formula (saltbase_install.sls) 112
Static Files 113

Pillar Customization 113
PXESaltBase Pillar Contents 113
How to use the pillar 114

Build Walkthrough 115
Deploy a new VM 115
Set up the Salt 115
Set up the Pillar 116

Deployment and Testing 116
Make it so! 116
Stepping through the Salt-Master report 117
Enable the PXESaltBase machine 135

Finish Line / The Real Start 136

Looking Forward 137
Example: Build a Complementary apt-cache 137

Apt-cache Deployment 137
Apt-cache Overview 137
Install prerequisites (Apache) 138
Install apt-cacher package 138
Add a configuration file 138

Build the apt-cache configuration file 138
Install the apt-cache server config file 139
Enable the pillar 140

Run a highstate to build the apt-cache server 140
Update DNS Records 140
Point hosts to apt-cache server 141

Manually point hosts to aptcache 141

Add apt-cache server via salt 141
Add apt-cache server to SaltBase preseed file 141

Extra Credit: Configure apache and link to apt-cache status page 142
Replace default apache site 142
Add apt-cache status pointer 143
Clean out the document root 144
Run a highstate to add features to the apt-cache server 144

apt-cache source 144
apt-cache summary 144

Expanding on this work 145
Other Linux Variants 145
Targeted TFTP Boot Options 145
Acronis PXE Boot 145
Windows PE 145

Where to now? 146
gitfs Integration with a Local git Server 146
pygit2 solution 146
build git from a formula on a SaltBase machine 146
Migrating to a central salt-master 147
Layering Containerization 147

The Road Ahead 148
Gratitude 148

Appendix A: Detailed Breakdown of Helper Scripts 149
enable_ssh.sh 149

Analysis of enable_ssh.sh 149
Full source of enable_ssh.sh 150

newsalthostname.sh 151
Analysis of newsalthostname.sh 151
Full source of newsalthostname.sh 151

setupnetwork.sh 153
Analysis of setupnetwork.sh 153
Full source of setupnetwork.sh 155

Appendix B: Quick SaltStack Primer 162
Masters and Minions 162

Defining these roles 162
Self Mastered 162
Centrally Mastered 163

Structures 164

Salt 164
Formulas 164
States 164
Salt Examples 165

Pillars 166
Pillar Examples 167

Content 168
File Topology 169

Root Folders 170
top file 170
naming salt and pillar files 170

Standalone 171
Folder 171

external file inclusion 171
Formatting 173

YAML 174
Jinja 174

Salt Development Backgrounder 175
Leveraging Code Reuse 175
Understanding Salt Hierarchy 175

Formula Execution Order 175
State Name Conflicts 176
Formula Name Conflicts 176

Foreword

Content Summary
This is a technical document which details the process of building a computer infrastructure
capable of rapid and repeatable deployment to both virtualized and bare metal machines. It is
written in an additive manner such that each step can be understood both individually and as
part of a greater whole. All content starts as a baseline of detailed, manual steps which are
subsequently automated using open-source software. This culminates in an automated
infrastructure built using well documented code.

The companion code for this document is maintained here:
https://github.com/love2scoot/pxesaltbase-formula

Intended Audience
Although this document details the full process of building an integrated deployment
infrastructure, it is written in such a way that all individual components are fully detailed in and of
themselves. As such, this content may be applicable to many different parties.

For example, the overall infrastructure build is probably most relevant to IT professionals or
software developers. However, an end user looking for a good guide on automating Ubuntu
installations may find the information on preseed files handy.

While this content is relatively technical in nature, it is presented in such a way to maximize the
benefit to the largest audience possible.

tl;dr
Want to cut straight to the chase? Go to the final ​Build Walkthrough​.

License

This document and all associated code is released as an open source project
and is subject to the terms of the ​Mozilla Public License, v. 2.0​.

https://github.com/love2scoot/pxesaltbase-formula
https://www.mozilla.org/en-US/MPL/2.0/

Introduction

The Promise of DevOps
Over the last 10 years the concept of “IT” has seemed to bifurcate into two distinct fields:
infrastructure support and DevOps. While the former remains a fundamental component to a
successful IT department, implementing DevOps has become an essential approach in order to
keep pace with the speed of modern deployments.

Wikipedia:
DevOps​ is a term used to refer to a set of practices that emphasizes the collaboration and
communication of both software developers and other information-technology (IT)
professionals while automating the process of software delivery and infrastructure changes.
It aims at establishing a culture and environment where building, testing, and releasing
software can happen rapidly, frequently, and more reliably.

While the definition of DevOps is easy to understand, embodying this concept in a set of
integrated tools is a different matter. There are many ways to approach this, and a multitude of
possible solutions. For the purpose of this document we have selected one path and attempted
to detail the process of designing, implementing, releasing, and testing a basic DevOps
infrastructure.

Goals
This document seeks to meet a basic set of goals, which are structured around providing the
highest level of benefit both discretely and, more importantly, as a comprehensive solution to a
basic DevOps infrastructure.

Unified, piecewise documentation
When using internet forums to researching answers to IT challenges, it is easy to find solutions
to specific queries, but seldom are comprehensive approaches available. One of the goals of
this document is to unify all documentation for the given approach such that each discrete
component can stand on its own, while still informing the greater whole. In this way, users
looking for a subset of this solution can come away with as much benefit as those who are
seeking a more comprehensive approach.

Repeatable deployment
In some cases, excellent documentation is available, but when an attempt is made to replicate
an approach, the user runs into errors or unexpected results. The second goal of this document
is to detail processes ​as well as all major version data​ for the components involved. In this way
the end user is not left stranded due to version creep, and will be able to deploy each
component in a predictable and repeatable manner.

Host agnostic
While virtualization is now a fundamental part of most DevOps approaches, it can be equally
important to support implementation on bare metal. Within software development, the use of
virtualization can help a team rapidly iterate on source. In contrast, hardware development work
will oftentimes require the direct connection of "hardware in the loop" to a build system. The
third goal of this document is to design a solution such that deployment can be agnostic to
either a VM or bare metal.

Rapid development
Finally, this document should help illustrate the benefits inherent in the DevOps process by
dogfooding the very processes detailed within. The end product will not only be an outline for
how to deploy this infrastructure, but will allow for leveraging this infrastructure to build itself.
This will allow the end user to rapidly iterate on this content and deploy a fully integrated
DevOps infrastructure.

Building Blocks
While the goals of implementing DevOps seem clear, there are several methods that can be
used to deliver on this promise. In order to provide a comprehensive platform, we will need to
integrate several different software elements. In this section we provide a summary of each
piece of software and how it will integrate into this platform.

VMWare Workstation Player
In order to kick off the development cycle, we need an easy way to install our base OS. This
process could alternately use bare metal, but the better choice here is to use a hypervisor,
specifically VMWare Workstation Player. This hypervisor will run atop Windows or Linux and
help keep the development cycle simple. Note that the use of this hypervisor is only necessary
during the building of our PXE solution, after which the PXE server itself will be used for
provisioning new machines.

Ubuntu
As a very widely supported Linux variant with extensive online documentation, Ubuntu is an
optimal choice for an open source OS. Not only will Ubuntu be used as the basis for configured
machines, but it will additionally be used as the base on which our DevOps infrastructure is
built.

SaltStack
Most approaches to DevOps utilize a piece of software for Configuration Management,
essentially automating the build, deployment, and continuous configuration of machines across
an enterprise. This area is relatively well established with several different software
implementations. Examples here include Ansible, Puppet, Fabric, Chef, and SaltStack (among
others). The are numerous articles written comparing these options, but for the purposes of this
document we will be using SaltStack as our Configuration Management software of choice.

gitfs
While several version control systems exists, git is well established and has excellent
community support and documentation. Additionally, SaltStack has integrated support for git
through use of gitfs. gitfs allows SaltStack to directly access source stored on a git server. This
approach allows for a very rapid development cycle that scales well from singular developers up
to teams. The use of gitfs within SaltStack also simplifies the process of configuring and
deploying systems at scale.

PXE
P​reboot e​X​ecution ​E​nvironment allows machines (physical or virtual) to boot using a
configuration provided over a network. In our case we will be using PXE as the most
fundamental service on which new machines will be built. PXE essentially allows us to boot to a
menu within which we can provide a variety of specific configuration options. These options will
allow a machine to boot in a specific and repeatable way.

Development

Approach to Development
A DevOps environment allows the developer to leverage standardized base configurations,
integrated version control, rapid iteration, and verification cycles to their maximum advantage.
Once this environment is brought to bear on development and configuration, developers will
immediately be able to leverage the efficiency gains it promises. We will explore each of these
topics, and provide some suggested best practices.

Deployment Methods
While the ​development ​cycle can be completed on virtual hosts, ​deploying ​a system
configuration should be host agnostic. When considering deployment methods, the advantages
and limitations of deploying to both virtualized hosts and bare metal hardware should be taken
into consideration. This deployment process needs to be as optimized as possible while
ensuing that the resulting machine configuration performs identically on both virtualized and
bare metal hosts.

The Approach: Layering
In order to best emulate the process of developing a DevOps infrastructure from scratch, our
solution will be built one layer at a time. After each layer is built manually, we can then work
toward automating that process. We then add another layer (and so on) until we arrive at a
comprehensive automated solution. The figure below provides a high level view of the building
blocks that integrate into our solution.

Part I: Manual Build of SaltBase
The first major process is the manual configuration of a ​SaltBase​ Virtual Machine. This VM is
built using open tools which, when correctly configured, will result in a basic template (or
SaltBase) on which the next major step of the DevOps infrastructure can be built.

Part II: Manual Build of PXE Server
Using the SaltBase output from Part I, a manually configured ​PXE server​ will be built. This
PXE server will include a boot configuration which converts the ​manual ​build process detailed
within Part I to an ​automated ​deployment of a SaltBase machine. This auto deployed SaltBase
machine will, in turn, be the base on which the next part of our DevOps solution will be built.

Part III: DevOps Development Cycle
Using the auto deployed SaltBase, the detailed ​DevOps Development Cycle​ will be
documented. This development cycle will suggest best practices and articulate the benefits
afforded by the Ubuntu + Salt + gitfs + PXE approach.

PXE Feature Add
Now that the basic functionality of the DevOps infrastructure is fulfilled, we can look into adding
additional functionality to the PXE server itself with additional boot menu options.

Dogfooding: SaltStack build of PXE
Now that the entire build process has been outlined manually (including the additional features),
we will dogfood the process by building the very infrastructure documented herein. This section
will show how to build a DevOps infrastructure using SaltStack by automating the manual steps
detailed in Part II and in the Feature Add. The output will be the fully automated build of a new
PXE server.

Looking Forward
Taking stock of all the content within this document, we’ll look at areas of enhancement and
avenues of further research which could potentially be layered on top of this infrastructure.

Appendix A: Detailed Breakdown of Helper Scripts
SaltBase machines have (3) helper scripts loaded into /root by default. This section will look
into each script, how it is written, and how it streamlines the setup of a new SaltBase machine.

Appendix B: Quick SaltStack Primer
Although this document makes extensive use of SaltStack, explaining this configuration
management tool in-line would be burdensome. This appendix can be used as reference for
basic structure, nomenclature, formatting, topology, and development practices centered around
SaltStack.

Part I: Manual Build of Salt Base

The first major process is the manual
configuration of a ​SaltBase​ Virtual Machine.
This VM is built using open source tools
which, when correctly configured, will result in
a basic template (or SaltBase) on which the
next major step of the DevOps infrastructure
can be built. This process can be broken
down into:

● Configuration of a VM using
VMWare Workstation Player

● Installation of the Ubuntu 16.04 x64

Server OS

● Configuration of SaltStack packages

● The configuration of gitfs and the
building of supporting packages

● The manual deployment of an Ubuntu

16.04 x64 Server SaltBase machine

VMWare Workstation Player

Why Player
Using a hypervisor for the installation of our development
environment keeps our approach simple and flexible.
VMWare Workstation Player will run atop Windows or
Linux, allowing these first steps to be taken on an
existing computer. Note that the use of a hypervisor is
only necessary in the building of our PXE solution, after
which the PXE server itself will be used for provisioning.

Install VMWare Workstation Player
You can download VMWare Workstation Player from the ​VMWare site​. Follow the ​simple
instructions​ for installation. At the time of this writing, VMWare Workstation Player was on
version 12.5.2.

Building the Development VM
1. Start VMWare Workstation Player
2. Click the ​Create a New Virtual Machine​ button on the right.
3. Leave the radio button on ​I will install the operating system later​ and click ​Next​.
4. On the ​Guest Operating System​ window, change the radio button to ​Linux​ and change

the ​Version dropdown​ to ​Ubuntu 64-bit​. Click ​Next​.
5. On the ​Name the Virtual Machine​ window, change the values in the ​Virtual Machine

Name​ field and the ​Location​ field to fit your needs. Click ​Next​.
6. On the ​Specify Disk Capacity​ window, change the ​Maximum Disk Size (GB)​ field to at

least 50GB. If you prefer to have the disk stored as a single file, make this change. Click
Next​.

7. On the ​Name the Virtual Machine​ window, click on ​Customize Hardware​.
a. In the Hardware list, select​ Network Adapter​.
b. On the right hand side, under ​Network Connection​ section, change the radio

button to ​Bridged​.
c. Click the ​Close​ button to complete the modification of the Virtual Hardware.
d. Click the ​Finish​ button to complete the creation of the Virtual Machine.

https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2053973
http://www.vmware.com/products/player/playerpro-evaluation.html
https://kb.vmware.com/selfservice/microsites/search.do?language=en_US&cmd=displayKC&externalId=2053973

Ubuntu

Why Ubuntu
Ubuntu is a well supported and well documented Linux
distribution. While it lacks an association with the default
enterprise approach taken by RHEL / CentOS, it works
well for development and can be deployed in production
using LTS releases. Ubuntu provides a good common
ground between development teams and IT teams, helping move toward the goal of a full
DevOps solution.

Installation media
Download Ubuntu 16.04 x64 Server ISO from the ​Ubuntu site​. While the instructions in this
document ​may ​work for newer versions of Ubuntu Server, this content was originally built for
v16.04.2.

Mounting the ISO
1. If not already open, start VMWare Workstation Player.
2. From the list of virtual machines, select the VM created in the section above, and select

Edit virtual machine settings​ from the menu on the right.
3. In the Hardware list, select ​CD/DVD (SATA)​.
4. On the right hand side, under the ​Connection​ section, change the radio button to ​Use

ISO image file​.
5. Click the ​Browse​ button and find the Ubuntu ISO you downloaded above and select this

file.
6. Click the ​Close​ button to complete the modification of the Virtual Hardware.

Manual Install vs preseed file
Although we could use a preseed file to quickly and easily build the VM, we’re going to step
through the setup of the development VM manually as this is in line with the layering approach
espoused above. We will leverage a preseed file for automated installs later in this document.

Manual Install Process
1. If not already open, start VMWare Workstation Player.
2. Select your Development VM from the list of virtual machines and start the VM
3. Select your keyboard type from the list
4. Select ​Install Ubuntu Server
5. Select your Language from the list

https://www.ubuntu.com/download/server

6. Select your location from the list
7. Do NOT detect keyboard layout by selecting ​No
8. Select ​English (US)​ when asked for keyboard
9. Select ​English (US)​ when asked for keyboard layout
10. Specify a hostname when prompted
11. Specify the Full name for the new user as ​temp
12. Specify the Username for the new user as ​temp
13. Specify the password.​ ​Re-enter to confirm
14. When prompted to configure your home folder for encryption, select ​No
15. The installer will attempt to find your timezone. Confirm if correct, change it if it guessed

incorrectly.
16. Select ​Guided - use entire disk​ when prompted for the partition scheme
17. Select the Virtual Disk for use with the OS (there should only be one option)
18. If prompted, select ​Finish partitioning and write changes to disk
19. Confirm the changes should be written to the disk by selecting ​Yes
20. Leave the HTTP proxy field blank and ​Continue
21. Select ​No automatic updates​ when prompted
22. On the ​Software Selection​ screen, leave this as the default (standard system utilities

only) and select ​Continue​.
23. Confirm with ​Yes​ that you wish to install GRUB to the master boot record
24. Select ​Continue​ to reboot the Virtual Machine

Basic OS Setup
After reboot, a few basic steps should get the VM ready for configuration.

1. Login using the ​temp ​user created at installation
2. Enable the root account (specify the root password here)

sudo passwd root

3. Logout of the temp user

exit

4. Login as ​root
5. Remove the temp user

userdel -r temp

6. Enable SSH for root by changing the config file using a simple sed replace

sed -i "s/^PermitRootLogin.*/PermitRootLogin yes/g" /etc/ssh/sshd_config

7. Restart the ssh service

service ssh restart

From this point, the Virtual Machine can be either accessed directly or via SSH using root.

SaltStack

Why SaltStack
Most approaches to DevOps utilize a piece of software
for Configuration Management, essentially automating
the build, deployment, and continuous configuration of
machines across an enterprise. We have chosen
SaltStack as our Configuration Management software of
choice for the following reasons:

● SaltStack is very actively developed, with extensive ​documentation​ and active ​forums​.

● The ​YAML​ markup is easy to understand and visually parse, which simplifies
development.

● SaltStack is powerful and flexible, minimizing the reliance on external scripts or bash
commands.

● When configured correctly, SaltStack can seamlessly leverage formulas directly from
network connected sources. This enables the configuration of salted machines using
any source available, delivering on code reuse at scale.

● The capacity to continuously configure machines allows SaltStack to scale all the way
from local development to enterprise, delivering on many facets of DevOps.

From the above characteristics, we have seen the following benefits:

● Repeatable, programmatic builds of engineering virtual machines / toolchains.

● Easy maintenance and improvement of existing configurations through use of simple
markup and scripting committed to source control.

● Elimination of copying entire virtual machines to engineering teams (especially important
when considering projects that span geographically distant design centers)

● Rapid development of machine configuration through the easy, iterative cycle enabled
through use of SaltStack.

● Easy reuse of configuration code, allowing for increased momentum and a shortened
development cycle.

Side Note:​ Included in Appendix B is a ​Quick SaltStack Primer​ which briefly covers the
concepts, nomenclature, and standards associated with this Configuration Management tool.
If you need an introduction to (or review of) Saltstack, this section should come in handy.

https://docs.saltstack.com/
https://saltstack.com/community/
https://en.wikipedia.org/wiki/YAML

Installing SaltStack
SaltStack is actively developed, and as such, the SaltStack packages included within the
regular OS package repositories can fall out of date rapidly. The preferred method for installing
SaltStack, therefore, is to update the package sources list to include a repository hosted by the
SaltStack developers.

Apt source changes
The first step here is to add a new apt source to the list on the OS, allowing for the installation of
the latest salt packages..

1. Login to the VM either directly or via SSH using root.
2. Add the latest key for the SaltStack repo (16.04)

wget -O -

https://repo.saltstack.com/apt/ubuntu/16.04/amd64/latest/SALTST

ACK-GPG-KEY.pub | apt-key add -

3. Add the repo to the sources list (16.04)

echo deb

http://repo.saltstack.com/apt/ubuntu/16.04/amd64/latest xenial

main >> /etc/apt/sources.list.d/new1604saltstack.list

Installation of packages
Next we install the SaltStack packages.

1. Update the local package listing with the new packages

apt update

2. Install the salt packages

apt install -y salt-common salt-master salt-minion

Configure VM as Self-Mastered
After installation, we must perform a few short configuration changes to setup the VM as a
self-mastered minion.

1. By default, a Salt Minion will try to connect to the DNS name "salt". We are using a self
mastered approach for development, and as such we only need to add the DNS name to
the hosts file. This will essentially allow the local salt minion to point to the local salt
master.

nano /etc/hosts

2. Add the entry for salt ​(new content in ​light green​)

127.0.0.1 localhost ​ salt

3. Start the services

service salt-master start

service salt-minion start

4. Next we'll need to add the key of the minion to the master. The easiest way to do this is
simply have it auto-accept all keys without confirmation.

salt-key -y -A

Build basic Salt Master Config
Next we need to setup SaltStack with a basic configuration. Note, that all files within
/etc/salt/master.d are concatenated and interpreted along with the standard configuration file
located at /etc/salt/master. This gives us the advantage of being able to build a very small
config file for salt which is easy to maintain ​without​ touching the default config file.

1. Create a new salt-master config file:

nano /etc/salt/master.d/devops_standard.conf

2. Add the following lines:

#The root location for local salt source

file_roots:

 base:

 - /srv/salt

#The hash to use when discovering the hash of a file on the

master server

hash_type: sha256

#The root location for local pillar source

pillar_roots:

 base:

 - /srv/pillar

#Specify the search order of the backend file systems

fileserver_backend:

 - roots

3. Restart the Salt master in order to pick up these changes:

service salt-master restart

4. Create the folders that contain the salt formulas and pillars (in the default configuration)

mkdir /srv/salt

mkdir /srv/pillar

5. Build the default top.sls file for the master and a placeholder for the pillar

echo "base:" > /srv/salt/top.sls

echo " '*':" >> /srv/salt/top.sls

cp /srv/salt/top.sls /srv/pillar/top.sls.example

Testing the SaltBase Machine
We run through a few basic tests to verify function of the newly installed and configured salt.

1. Verify the versions of the installed packages

salt-master --version; salt-minion --version

2. Verify the status of the salt services

service salt-master status

service salt-minion status

3. Verify communication between the master and the minion using the command

salt '*' test.ping

Build and apply a basic formula

In order to fully test the functionality of the self-mastered minion we need to build a basic
formula and apply it to the machine using a highstate. For this test we’ll make use of the
file.touch state​.

1. Create the formula.

nano /srv/salt/testformula.sls

2. Drop the following source into this file

https://docs.saltstack.com/en/latest/ref/states/all/salt.states.file.html#salt.states.file.touch

First formula

first_state:

 file.touch:

 - name: /tmp/testfile

3. Save the file and exit nano
4. Edit the top.sls salt file to include the new formula

nano /srv/salt/top.sls

5. Add a single line to add testformula to the top file (removing all other formulas). It should
now read:

base:

 '*':

 - testformula

6. Save the file and exit nano
7. Apply the state

salt '*' state.highstate

Read through the results. Note the reported success of the state and creating the file,
this should be displayed in ​green​. Also note that the state is reported using the name
assigned to the state within the formula (​first_state ​). Had there been two states
within the formula each would have been listed in the results.

8. Apply the state again

salt '*' state.highstate

Note the reported success of the state but also note that the no changes were made
since the file already exists. This success without change should be displayed in ​blue​.

9. Clean up the test by removing the “​- testformula ​” line from top.sls.

nano /srv/salt/top.sls

It should now read:

base:

 '*':

This now completes the setup of salt on our machine. Next, we’ll add gitfs support to add
additional flexibility to our machine.

gitfs

Why gitfs
Building on our self mastered salt machine, we next
layer gitfs. gitfs allows a master to directly use salt
formulas stored on a git server. There are several
advantages to this approach:

● Salt source can be edited and pushed to a central git server, allowing the developer to
choose their environment of choice

● Using a git server allows developers to verify salt formulas across several different
machines by deploying across different hardware / hypervisors

● gitfs allows developers to leverage formulas across teams by using salt stored both
locally (on the master) and remotely (on the git server) simultaneously

● gitfs allows developers to leverage formulas stored on public repositories, like the
SaltStack formulas on GitHub

https://github.com/saltstack-formulas

The pygit2 problem
Adding gitfs functionality to our machine should be a simple matter, but there is a challenge
within one of the dependent packages, pygit2. pygit2 allows python (fundamental to salt) to
interact directly with git servers. The pygit2 package is dependent on a library called libgit2
which is compiled to only support the SSH protocol by default. ​Ideally, libgit2 would support
both ​SSH and HTTP/S, but no package repository or ppa makes this available.​ We are left with
only one option: downloading and compiling libgit2 from source (including the dependencies for
HTTP/S functionality) before installing pygit2. This section will cover how to compile the libgit2
package, install pygit2, and verify the capabilities of pygit2 after installation.

Solution: Compile from source
1. Install the build tools and dependent packages

apt install -y build-essential cmake libssh2-1-dev

python-dev python-pip python-cffi libssl-dev libffi-dev

pkg-config libcurl4-openssl-dev libhttp-parser-dev

2. Download, uncompress, and build libgit2 then install pygit2

cd /tmp

wget

https://github.com/libgit2/libgit2/archive/v0.25.0.tar.gz

tar -zxf v0.25.0.tar.gz

cd ./libgit2-0.25.0

cmake .

make

make install

ldconfig

pip install pygit2==0.25.0

Side Note:​ the ​pip install pygit2​ line must be locked to the same version number as libgit2
which is being built from source.

Since we are downloading libgit2 using the line:

wget https://github.com/libgit2/libgit2/archive/v0.25.0.tar.gz

The corresponding pip install line reads:

pip install pygit2==0.25.0

Test and verify
1. Verify that the newly installed pygit2 allows for use of both https and ssh protocols. (both

bool commands should return TRUE)

python

import pygit2

bool(pygit2.features & pygit2.GIT_FEATURE_HTTPS)

bool(pygit2.features & pygit2.GIT_FEATURE_SSH)

exit()

Add config changes for gitfs
Now that pygit2 is correctly installed, we need to make the configuration changes to the salt
master in order to leverage remote gitfs sources.

1. Edit the config file:

nano /etc/salt/master.d/devops_standard.conf

2. Add the lines for the gitfs configuration (new lines in ​light green​). It should now read:

#The root location for local salt source

file_roots:

 base:

 - /srv/salt

#The hash to use when discovering the hash of a file on the

master server

hash_type: sha256

#The root location for local pillar source

pillar_roots:

 base:

 - /srv/pillar

#Specify the search order of the backend file systems

fileserver_backend:

 - roots

 - git

#Specify which method provides gitfs access to salt

gitfs_provider: pygit2

3. Create a placeholder file to hold the list of remote gitfs repositories.

nano /etc/salt/master.d/gitfs_remotes.conf

While technically gitfs remotes can be stored in the ​devops_standard.conf ​ file, it’s
better practice to keep these in their own file.

4. Add the following content to the ​gitfs_remotes.conf ​ file and save it.

#gitfs_remotes:

- https://gitsource.bobbarker.com/happy.git:

- user: for protected sources

- password: for protected sources

- root: salt

5. Restart the Salt master in order to pick up these changes:

service salt-master restart

Apply a state from a gitfs source
Now that gitfs support (with both SSH and HTTP/S) is available to the machine, we can perform
a full test by applying a state stored on a remote server. In this case, we’ll use the ​ntp formula
stored on the ​SaltStack formulas on GitHub

1. Open our gitfs_remotes.conf file for editing

nano /etc/salt/master.d/gitfs_remotes.conf

2. Remove the # on the first line and add the following content to gitfs_remotes.conf. ​Save
the file upon exit. ​(new content in ​light green​)

gitfs_remotes:

- https://gitsource.bobbarker.com/happy.git:

- user: for protected sources

- password: for protected sources

- root: salt

 - https://github.com/saltstack-formulas/ntp-formula.git

3. Edit the top file to include the new formula

nano /srv/salt/top.sls

4. Add the following content to top.sls and ​save​ the file. ​(new content in ​light green​)

base:

 '*':

 - ntp

5. Restart the Salt master in order to pick up these changes:

service salt-master restart

6. Update the local cache of remote sources (should return ​TRUE​):

salt-run fileserver.update

7. Finally, we run a highstate and ensure that the formula is applied correctly

salt '*' state.highstate

At this point, Salt should attempt to apply the ntp formula to the salt-minion and report back
results. Assuming the results are positive, this validates using formulas from remote gitfs
sources. The above changes can be backed out of, if desired.

https://github.com/saltstack-formulas/ntp-formula/
https://github.com/saltstack-formulas

Future considerations
It is possible that future pygit2 packages will be cross compiled to integrate both SSH and
HTTP/S protocols. To test this, simply install the pygit2 package (​apt-get install
python-pygit2 ​) and run the ​Test and verify​ process above.

Save Point: Export SaltBase to .ova

Creating a universal OVA template on Windows
In order to create an OVA template that will be
compatible with the maximum number of
hypervisors, use the following guidelines with
VMWare Workstation Player.

1. Ensure the VM version is no greater than
11. If it is greater, open the .vmx file in a
text editor and change the following line:

virtualHW.version = "11"

2. Open the virtual machine in VMWare Workstation Player (do not start the VM), edit the
VM settings, and remove the SATA CD-ROM device (if present). Close VMWare
Workstation Player.

3. Browse to the folder containing the VM
4. Open the .vmx file using a text editor
5. Find and remove all lines that include SATA or IDE, then save the .vmx file. Here are

some examples:

sata0.present = "TRUE"

sata0:1.present = "TRUE"

sata0:1.fileName = "C:\VMWare\ubuntu-16.04-server-amd64.iso"

sata0:1.deviceType = "cdrom-image"

Exporting the OVA Appliance on Windows
1. Find the path to your VM
2. Open a command prompt (elevated). ​NOTE:​ This

does not work in PowerShell.
3. Change to the OVFTool folder to execute the

ovftool command

cd "C:\Program Files

(x86)\VMware\VMware Player\OVFTool"

4. Convert your VM to an OVA Template

ovftool --compress=9 “C:\the path to your VM\your

VMname.vmx” "c:\newdirectory\name.ova"

The First Finish Line
We now have our first real output from our DevOps approach: a manually built VM of a SaltBase
machine captured within an .ova file. This both a) lays the groundwork for the first steps into
automation and b) gives us an outline on which to expand that automation. Using this .ova as
the foundation, we can manually build a full PXE server allowing for the ​automated ​configuration
and deployment of a SaltBase machine.

Part II: Manual Build of PXE Server

Using the SaltBase output from ​Part I​, a manually
configured ​PXE server​ will be built. This PXE server will
include a boot configuration which converts the manual
build process in Part I to an automated deployment of a
SaltBase machine. This process can be broken down into:

● Manually deploying an Ubuntu 16.04 x64 Server
SaltBase VM created as the output of Part I

● Installation and configuration of the prerequisites

for a PXE server

● Configuration of external prerequisites

● Configuration of a basic PXE menu

● Expansion of the PXE menu with specific menu
items

● The download and configuration of an Ubuntu ISO

file on the PXE server. ​This automates the OS
media setup steps from Part I

● The development of a Debian preseed file for the

automated installation of the Ubuntu OS. ​This
automates all of the manual Ubuntu OS
installation steps from Part I, in addition to all
basic configuration steps for SatlStack

● The development of the SaltBase_Install Salt

Formula which will complete the configuration of a
SaltBase machine. ​This automates all manual
configuration steps applied on top of the OS
from Part I

● The ​automated ​deployment of an Ubuntu 16.04

x64 Server SaltBase machine

What is PXE
As mentioned in the introduction, PXE is an abbreviation of ​P​reboot e​X​ecution ​E​nvironment. It
allows machines (physical or virtual) to boot using a configuration provided over a network.

Our goal is to configure the PXE server with a menu which allows a user to select from multiple
boot options. One of these options will configure and automatically deploy an Ubuntu 16.04 x64
Server configured as a SaltBase machine.

SaltBase Manual Deployment
Taking the output of Part I above, we can manually
deploy a ​SaltBase ​machine as the fundamental building
block for our PXE Server. Although it is possible to use
a different hypervisor, we will use VMWare Workstation
Player for this example. The process below will outline
steps for deploying the .ova template created above to a
new Virtual Machine..

1. Start VMWare Workstation Player
2. Click the ​Open a Virtual Machine​ button on the right.
3. On the ​Open Virtual Machine​ window, browse to the location of the .ova template

completed above at the end of Part I. Double click on the .ova file to open it.
4. On the ​Import Virtual Machine​ window, you can customize both the name and path for

the new VM. Click the ​Import​ button to complete the import process.
5. Wait while VMWare imports the VM from the .ova template.
6. Click the ​Play virtual machine​ button on the right to start the VM.

PXE Server Prerequisites
There are a few packages which must be installed in
order to build the PXE server. Additionally, a basic
configuration for these packages must be completed
before the initial boot menu can be constructed.

Static IP
In order for machines to leverage PXE to boot, the PXE server should be locked to a known
static IP.

1. Edit the network interfaces file

nano /etc/network/interfaces

2. Manually change the configuration for the ethernet adapter (edits in ​light green​)

This file describes the network interfaces available on

your system

and how to activate them. For more information, see

interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

auto ensXX # Make sure to keep this interface name the same

iface ensXX inet ​static
 address 10.1.1.XXX

 netmask 255.255.255.0

 network 10.1.1.0

 broadcast 10.1.1.255

 gateway 10.1.1.1

 dns-search bobbarker.com #Enter domain name suffixes

 dns-nameservers 10.1.1.10 #Enter the IP(s) of your

nameservers

A few quick notes on the above:

● The name of the Ethernet adapter will be generated (by default in Ubuntu
15.10+). Make sure to maintain the same name when editing this file.

● The IP address, netmask (subnet), network, broadcast, and gateway are
suggestions. These can be changed to coordinate with your existing network
structure.

● While not required, it’s good practice to populate both the ​dns-search​ and
dns-nameservers​ lines if applicable. The lines above contain examples and
should be replaced or removed to ​coordinate with your existing network structure.

tftpd-hpa
The tftp protocol is fundamental to how PXE sends boot information. This needs to be installed
and configured.

1. Install the prerequisite packages

apt-get install -y apache2 tftpd-hpa

2. Edit the configuration file for the tftp server.

nano /etc/default/tftpd-hpa

3. Add the following content to the file. (new lines in ​light green​)

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"

TFTP_DIRECTORY="/var/lib/tftpboot"

TFTP_ADDRESS="[::]:69"

TFTP_OPTIONS="--secure"

RUN_DAEMON="yes"

OPTIONS="-l -s /var/lib/tftpboot"

4. Restart the tftpd-hpa service

service tftpd-hpa restart

PXE Server Bootstrap Files
In order to get the server to boot network clients using PXE, a few files must be copied from the
Ubuntu ISO to the tftpboot folder.

1. Download the Ubuntu 16.04 x64 Server ISO to the local drive

wget -P /media/

http://releases.ubuntu.com/16.04.2/ubuntu-16.04.2-server-amd

64.iso

2. Mount the ISO to a temporary folder. We will use this path as the source from which to
copy the required pxelinux files.

mkdir /tmp/bootfiles

mount -t iso9660 -o loop

/media/ ​ubuntu-16.04.2-server-amd64.iso ​ /tmp/bootfiles

3. Copy the (5) pxelinux files from the mounted ISO to the tftpboot folder

cp /tmp/bootfiles/install/netboot/pxelinux.0

/var/lib/tftpboot/

cp /tmp/bootfiles/install/netboot/ldlinux.c32

/var/lib/tftpboot/

cp

/tmp/bootfiles/install/netboot/ubuntu-installer/amd64/boot-s

creens/vesamenu.c32 /var/lib/tftpboot/

cp

/tmp/bootfiles/install/netboot/ubuntu-installer/amd64/boot-s

creens/libcom32.c32 /var/lib/tftpboot/

cp

/tmp/bootfiles/install/netboot/ubuntu-installer/amd64/boot-s

creens/libutil.c32 /var/lib/tftpboot/

4. Check your work

ls /var/lib/tftpboot/

5. Remove the temporary mount point

umount /tmp/bootfiles

External Prerequisites
There is one requirement external to the PXE Server:
DHCP changes. This is called out as two different efforts
since the changes necessary often require a more
advanced DHCP server than can be found in a basic
network appliance. As such, a featureful DHCP server is
required in order to correctly apply the DHCP scope
options.

DHCP Server
Qualifying DHCP servers are those based on Linux, Windows, and more. Network appliances
(commodity routers) with open source firmware can also be used. Commodity routers with
factory firmware will oftentimes not be sufficiently featureful to accommodate the necessary
changes required for setting DHCP scope options. While a detailed guide on installing a DHCP
server is beyond the scope of this document, the following table should help guide users to the
solution of their choice.

Platform for DHCP Does the DHCP Server
need to be installed? DHCP Scope Options

Ubuntu Install the DHCP service Ubuntu DHCP Scope Options

Windows

DHCP on Server 2008
DHCP on Server 2008R2
DHCP on Server 2012 / R2
DHCP on Server 2016

Windows DHCP Scope
Options

Qualifying Network Appliance Yes See Firmware specific
configuration options

Basic Network Appliance

Yes, but it doesn’t support
PXE.

1. Install the DHCP service

on the PXE Server itself
2. turn off DHCP on the

Basic Network Appliance

Ubuntu DHCP Scope Options

https://help.ubuntu.com/lts/serverguide/dhcp.html
https://help.ubuntu.com/lts/serverguide/dhcp.html
https://docs.microsoft.com/en-us/windows-server/networking/technologies/dhcp/dhcp-deploy-wps
https://help.ubuntu.com/lts/serverguide/dhcp.html
https://blogs.technet.microsoft.com/teamdhcp/2012/08/31/installing-and-configuring-dhcp-role-on-windows-server-2012/
https://technet.microsoft.com/en-us/library/cc732075(v=ws.11).aspx
http://techgenix.com/how-to-install-configure-windows-server-2008-dhcp-server/

DHCP Server Changes

Linux DHCP Scope Options
1. Edit the dhcp config file

nano /etc/config/dhcpd.conf

2. Add the following changes to the end of the file:

allow booting;

allow bootp;

option option-128 code 128 = string;

option option-129 code 129 = text;

next-server 10.1.1.XXX;

filename "pxelinux.0";

Where the ​next-server​ line specifies the IP Address of the PXE server

3. Save the file and exit nano
4. Restart the dhcp service

service dhcpd restart

Windows DHCP Scope Options

DHCP Scope Option Name Setting

066 Boot Server Host Name IP Address of the PXE Server

067 Bootfile Name pxelinux.0

What about DHCP scope option 060?
In some guides, there is a suggestion to enable DHCP scope option 060, which specifies the
PXEClient option. This ​only applies​ if the DHCP server and the PXE server are on the ​same
machine. In this case, the PXE service cannot exist on the same IP ports as the DCHP
service. Setting option 060 tells the client to go look on port 4011 for the PXE Service.

Note that DHCP scope option 060 should therefore ​not​ be set where the DHCP server and
PXE are on separate machines (as is the case with the examples above).

First menu
Now that the prerequisites for the PXE server are
fulfilled, we can build a simple menu for the server.

Build a Basic Menu
1. First we need to make a config folder for our menu

mkdir /var/lib/tftpboot/pxelinux.cfg

2. Create a new default menu file

nano /var/lib/tftpboot/pxelinux.cfg/default

3. Populate this with the following lines

D-I config version 2.0

search path for the c32 support libraries (libcom32,

libutil etc.)

path ubuntu-installer/amd64/boot-screens/

include ubuntu-installer/amd64/boot-screens/menu.cfg

DEFAULT vesamenu.c32

PROMPT 0

TIMEOUT 300

MENU TITLE DevOps Awesome PXE Boot Menu

MENU AUTOBOOT Starting Local System in # seconds

LABEL bootlocal

 MENU LABEL ^1) Boot to Local Drive

 MENU DEFAULT

 LOCALBOOT 0

Let’s briefly cover this file structure:

● vesamenu.c32​ is a menu type which provides basic graphical capability to the
menu provided by the PXE server. Other menu options are also available. Both
the ​DEFAULT​ and ​PROMPT​ lines should be used.

● Providing a ​TIMEOUT​ is a good idea. Without a timeout, a machine that PXE
boots will sit indefinitely waiting for user input. Note the number is counted in
tenths of seconds, 300 being equal to 30 seconds.

● The ​MENU TITLE​ provides a banner for the menu

● The ​MENU AUTOBOOT​ line above provides a simple countdown timer for the
user.

● The ​LABEL bootlocal​ helps delineate the first menu entry. Although not
required, it’s a good idea to indent the settings under a LABEL as shown above.

● The ​MENU LABEL​ line is the text presented to the user for the menu entry. The
​̂ character defines a hotkey for the menu, so the character after it should be

unique within the scope of the menu. In this case we’ll use a numbering scheme.

● MENU DEFAULT​ means that after our timeout expires, this menu option is
chosen as the default option. Defaulting to boot the local OS is good practice.

● LOCALBOOT 0​ is the directive which will be applied if this menu option is
chosen. In this case it will attempt to boot the local operating system.

4. Save the file and exit nano. A basic menu for the PXE server is now built (we’ll add
additional functionality later, following our layered approach)

Tip: ​For a very in-depth look at the PXE menu, see the ​syslinux menu wiki page​.

Testing the Basic Menu
Verification of our first menu can be completed using VMWare Workstation Player. We’ll start
with a blank VM and verify netboot functionality.

1. Start VMWare Player
2. Click the ​Create a New Virtual Machine​ button on the right.
3. Leave the radio button on ​I will install the operating system later​ and click ​Next​.
4. On the ​Guest Operating System​ window, change the radio button to ​Linux​ and change

the ​Version dropdown​ to ​Ubuntu 64-bit​. Click ​Next​.
5. On the ​Name the Virtual Machine​ window, change the values in the ​Virtual Machine

Name​ field and the ​Location​ field to fit your needs. Click ​Next​.
6. On the ​Specify Disk Capacity​ window, leave everything at the default and click ​Next​.
7. On the ​Name the Virtual Machine​ window, click on ​Customize Hardware​.

a. In the Hardware list, select​ Network Adapter​.
b. On the right hand side, under ​Network Connection​ section, change the radio

button to ​Bridged​.
c. Click the ​Close​ button to complete the modification of the Virtual Hardware.
d. Click the ​Finish​ button to complete the creation of the Virtual Machine.

8. In the Virtual Machine list on the left hand side, double click on the new VM.
9. The VM should start and after a moment the PXE boot menu should be shown

displaying only a single option to ​boot locally​.

http://www.syslinux.org/wiki/index.php?title=Menu

Ubuntu 16.04 x64 Server ISO + Config
All the manual steps to produce the foundation of a PXE
Server have now been completed. We will now begin to
automate much of the manual work from Part I, whereby
a machine will boot and be automatically configured as
an Ubuntu 16.04 x64 Server with integrated support for
SaltStack. This automation will be integrated as a menu option on the PXE server.

Get and Mount the ISO image
Taking cues from the ​PXE Server Boot Files​ process above, we’ll download and mount the
Ubuntu ISO. Note that since we are never writing to the file system of the ISO file (we only read
from the file system during OS installation), we can mount the ISO directly without needing to
copy the contents to the mount point. This simplifies the mount process and minimizes the
required space for file allocation.

1. If not already completed (since downloading of the Ubuntu ISO was performed above),
download the Ubuntu 16.04 x64 Server ISO to the local drive

wget -P /media/

http://releases.ubuntu.com/16.04.2/ubuntu-16.04.2-server-amd

64.iso

2. Create the mount point for the ISO file. Note that we intend to mount the ISO file inside
the document root folder of apache. This will allow the entire filesystem of the ISO to be
available via http.

mkdir ​/var/www/html/ubuntu1604x64server

3. Add a mount line to the server’s fstab file

echo ​"/media/ubuntu-16.04.2-server-amd64.iso
/var/www/html/ubuntu1604x64server iso9660 loop 0 0"

>> /etc/fstab

4. Mount all the points in the fstab file

mount -a

5. Verify that the ISO is correctly mounted

mount

SaltBase Bootstrap files
In order to boot the ISO, we first need to make the kernel and RAMdisk (which correspond to
the ISO we are booting) available to the tftp server installed on PXE. These will be copied into a
folder which will encapsulate this option for PXE.

1. Create the containing folder for this boot option

mkdir ​/var/lib/tftpboot/ubuntu1604x64server

2. Copy the kernel and RAMdisk into this folder. We use http here a) to verify apache is
functioning correctly and b) because http sources are easier to express in salt (we’ll see
the advantage of this later once we convert these manual steps to salt states).

wget -P /var/lib/tftpboot/ubuntu1604x64server/

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-

installer/amd64/linux

wget -P /var/lib/tftpboot/ubuntu1604x64server/

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-

installer/amd64/initrd.gz

Automated Ubuntu install using Preseed File
Built into Ubuntu (as a Debian derivative) is the ability to
preseed​ the installation of the OS. This essentially
provides a list of configuration choices usually made by
the user during the standard install process. It’s
important to understand the capabilities as well as the
limitations of the preseed approach. While preseed files
can be specified at boot time or integrated into boot media, we will be integrating our pressed
file directly into the PXE server. This preseed file, in conjunction with the ​OS media mount
above​, and the ​salt formula​ below, will serve to replace the steps required for the manual
deployment of a SaltBase machine (as detailed in Part I) with the ​automated ​deployment of a
SaltBase machine.

What can be completed in preseed?
● Setup of the root account, root password, and enable login for root

● Avoiding the default setup of a user other than root

● Setting of the timezone

● Setting of the partition scheme for the disc

● Installing some packages

● Set an update policy for the OS

● Hostname assignment

● Install SaltStack from external package sources

● Configure local file structure for Salt

● Dropping the SaltBase_Install formula onto the SaltBase machine

● Prepopulating the .bashrc with the final configuration steps using Salt

Add the saltbase_install folder
As the manual processes of Part I are replaced with automation, additional files are required as
part of this transition. While these files could technically live in the root of the web server
(/var/www/html), adding an additional folder to contain these files will keep this root folder
uncluttered.

1. Create the containing folder for saltbase_install files

mkdir ​/var/www/html/saltbase_install

Apt source file
The apt source for the updated salt packages needs to be written to the PXE server. This file
encapsulates the ​manual steps used in Part I​ for assigning this apt source.

1. Add the repo to the sources list (16.04)

echo deb

http://repo.saltstack.com/apt/ubuntu/16.04/amd64/latest xenial

main >> /var/www/html/saltbase_install/new1604saltstack.list

Build the Preseed File
The preseed file built for the PXE server is a modified version of the ​basic template offered by
Ubuntu​. The easiest way to detail the changes made is to take a diff between the original
template and the ​ub1604x64server.preseed​ file, going over each change in detail.

Line 2

Original (NULL)

ub1604x64server #### Found Here:

https://help.ubuntu.com/lts/installation-guide/example-preseed.txt

Details Provided a trace to where the data was originally found

Line 126

Original #d-i passwd/root-login boolean false

ub1604x64server d-i passwd/root-login boolean true

Details Uncommented to allow login from root upon first boot

Line 128

Original #d-i passwd/make-user boolean false

ub1604x64server d-i passwd/make-user boolean false

Details Uncommented to avoid making a default user other than root

https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/manualconfig/ub1604x64server.preseed
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt

Line 131 - 132

Original #d-i passwd/root-password password r00tme

#d-i passwd/root-password-again password r00tme

ub1604x64server d-i passwd/root-password password INeedToBeChanged

d-i passwd/root-password-again password INeedToBeChanged

Details Uncommented to automate the setting of the root password and changed
it to 8 character minimum to avoid console notification of weak password

Line 163

Original d-i time/zone string US/Eastern

ub1604x64server d-i time/zone string US/Pacific

Details Uncommented to automate setting of the timezone

Line 188

Original d-i partman-auto/method string lvm

ub1604x64server d-i partman-auto/method string regular

Details Changed to move from using logical volume manager to a standard
partition scheme.

Line 360

Original tasksel tasksel/first multiselect ubuntu-desktop

ub1604x64server #tasksel tasksel/first multiselect ubuntu-desktop

Details Commented out since we only want to install server and not desktop.

Line 363

Original (NULL)

ub1604x64server tasksel tasksel/first multiselect standard

Details Added a new line to install the standard packages.

Line 366

Original #d-i pkgsel/include string openssh-server build-essential

ub1604x64server d-i pkgsel/include string openssh-server

Details Uncommented and changed the line to allow for adding of the
openssh-server by default. Note that we will be adding the build tools
using the salt formula (as part of the process that builds full gitfs support)

Line 377

Original #d-i pkgsel/update-policy select none

ub1604x64server d-i pkgsel/update-policy select none

Details Uncommented, otherwise the installer will prompt for this setting.

Side Note:​ The remaining lines were added to the preseed file in order to:
a) minimally configure salt
b) run a salt highstate upon login to apply the remaining configuration
c) clean up afterward

Line 483 - 484

Original (NULL)

ub1604x64server d-i preseed/late_command string \

in-target sed -i 's|127.0.1.1.*|127.0.1.1 ub1604x64SvrSaltBase

salt|g' /etc/hosts; \

Details Ensure the machine being built is self-mastered by adding the salt name
to /etc/hosts

Line 485 - 487

Original (NULL)

ub1604x64server in-target mkdir /srv; \

in-target mkdir /srv/salt; \

in-target mkdir /srv/pillar; \

Details Create the basic salt folder structure

Line 488 - 490

Original (NULL)

ub1604x64server in-target wget -P /tmp/

https://repo.saltstack.com/apt/ubuntu/16.04/amd64/latest/SALTSTACK-GPG-K

EY.pub; \

in-target apt-key add /tmp/SALTSTACK-GPG-KEY.pub; \

in-target wget -P /etc/apt/sources.list.d/

http://pxe.bobbarker.com/saltbase_install/new1604saltstack.list; \

Details The SaltStack packages in the Ubuntu repository are woefully out of date.
Add the apt-key and the link to the latest salt packages. Note the
new1604saltstack.list file contains the pointer to the SaltStack package
repository as detailed in the ​Apt source changes​ section of Part I.

Line 491 - 492

Original (NULL)

ub1604x64server in-target apt update; \

in-target apt install -y salt-common salt-master salt-minion; \

Details Install the latest salt packages

Line 493 - 494

Original (NULL)

ub1604x64server echo "ub1604x64SvrSaltBase" > /target/etc/hostname; \

echo "ub1604x64SvrSaltBase" > /target/etc/salt/minion_id; \

Details Apply a new name to both the hostname and minion_id files

Line 495

Original (NULL)

ub1604x64server in-target wget -P /etc/salt/master.d/

http://pxe.bobbarker.com/saltbase_install/saltbase_install.conf; \

Details Drop in the salt configuration for the installation process. The
configuration file includes all the settings necessary for the initial setup of
a self-mastered minion. See below for a comparison of the installation
configuration file versus the running configuration file.

Line 496 - 497

Original (NULL)

ub1604x64server in-target wget -P /srv/salt/

http://pxe.bobbarker.com/saltbase_install/top.sls; \

in-target wget -P /srv/salt/

http://pxe.bobbarker.com/saltbase_install/saltbase_install.sls; \

Details Drop in the top file, and salt formula. The top file points to the
saltbase_install.sls, and the salt formula performs all the remaining
configuration changes necessary to complete a SaltBase machine.

Line 498

Original (NULL)

ub1604x64server echo "# START salt blockreplace" >> /target/root/.bashrc; \

Details Build the START delineator for the blockreplace salt state (everything
between START and END will be removed if the salt highstate succeeds)

Line 499 - 505

Original (NULL)

ub1604x64server echo "echo" >> /target/root/.bashrc; \

echo "echo '***************************************'" >>

/target/root/.bashrc; \

echo "echo '* SaltBase configuration completing *'" >>

/target/root/.bashrc; \

echo "echo '* This may take a few minutes *'" >>

/target/root/.bashrc; \

echo "echo '* Machine will reboot upon completion *'" >>

/target/root/.bashrc; \

echo "echo '***************************************'" >>

/target/root/.bashrc; \

echo "echo" >> /target/root/.bashrc; \

Details Add a notification to the root .bashrc so the user knows the final SaltBase
configuration is taking place and manage expectations

Line 506

Original (NULL)

ub1604x64server echo "salt '*' state.highstate > /root/saltbase_install.log" >>

/target/root/.bashrc; \

Details Automatically run a salt highstate upon root login

Line 507

Original (NULL)

ub1604x64server echo "reboot" >> /target/root/.bashrc; \

Details Automatically reboot after the highstate is applied

Line 508

Original (NULL)

ub1604x64server echo "# END salt blockreplace" >> /target/root/.bashrc

Details Build the END delineator for the blockreplace salt state (everything
between START and END will be removed if the salt highstate succeeds)

Side Note:​ The simple way to set the root password uses plaintext input. A more secure
way to accomplish this is by pre-hashing the password and using the root-password-crypted
command. First, get the hash of the password using mkpasswd, then use the result as input
for the root-password-crypted command. (mkpasswd requires the whois package be installed)

mkpasswd -H md5 "INeedToBeChanged"

Line 134

Original #d-i passwd/root-password-crypted password [crypt(3) hash]

ub1604x64server d-i passwd/root-password-crypted password
1ROnGTxWk$yaVNw1c07.K2y8VJfmFQF0

Details Uncommented to automate the setting of the root password using the
pre-hashed value. Note: This is the hash of the default root password
from above.

Drop the preseed file and dependent files into place

1. Download the preseed file directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/manualconfig/ub1604x64server.preseed

2. Download the saltstack package source link from our github source

wget -P /var/www/html/saltbase_install

https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/new1604saltstack.li

st

3. Download the salt-master configuration files for the installation process directly from our
github source

wget -P /var/www/html/saltbase_install

https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/saltbase_install.co

nf

4. Download the salt top file directly from our github source

wget -P /var/www/html/saltbase_install

https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/top.sls

5. Download the saltbase_isntall.sls salt formula directly from our github source

wget -P /var/www/html/saltbase_install

https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/manualconfig/saltbase_install.sls

Understanding the difference in salt-master configuration files
As detailed above, the salt-master configuration file, ​saltbase_install.conf ​, is installed
as part of the preseed process. This configuration file differs from the salt-master configuration,
devops_standard.conf ​, detailed in the ​Add config changes for gitfs​ section of Part I.
Understanding how these two files differ helps give insight into the process of building an
self-mastered SaltBase machine ​using automation​.

saltbase_install.conf devops_standard.conf

#The root location for local salt source

file_roots:

 base:

 - /srv/salt

#The hash to use when discovering the hash of

a file on the master server

hash_type: sha256

#The root location for local pillar source

pillar_roots:

 base:

 - /srv/pillar

#Specify the search order of the backend file

systems

fileserver_backend:

 - roots

#Turn on auto accept mode during installation

auto_accept: True

#The root location for local salt source

file_roots:

 base:

 - /srv/salt

#The hash to use when discovering the hash of

a file on the master server

hash_type: sha256

#The root location for local pillar source

pillar_roots:

 base:

 - /srv/pillar

#Specify the search order of the backend file

systems

fileserver_backend:

 - roots

 - git

#Specify which method provides gitfs access

to salt

gitfs_provider: pygit2

● With the compilation of libgit2 from source being performed in the salt formula (which

happens ​after​ initial boot), the salt-master install config cannot include git as a backend
nor call out a gitfs provider. These lines are therefore absent from the salt-master install
config.

● Getting the salt-master to accept the salt-key of the salt-minion, ​without user
intervention​, is not a trivial process. In the ​Configure VM as Salf-Mastered​ section of
Part I, the user completes this process manually using the salt-key command; however
this command does not work well with a newly configured minion. The easiest way to
automate this during installation is to temporarily enable auto_accept within the
salt-master config. Upon first boot, the salt-master will accept the salt-key of the
salt-minion and store this key going forward, ​even after auto_accept is turned off​.

● Upon the first boot of the SaltBase machine, the SaltBase_Install formula will be applied.
Part of this formula replaces this salt-master install config with the devops config,
effectively locking down the salt-master configuration and opening up gitfs compatibility.

Complete Configuration Using Salt
While some of the configuration required for building a
SaltBase machine is accomplished with the preseed file
above, additional configuration is completed using a salt
formula. The final lines of the preseed file configure
SaltStack, download the salt formula, and pre-populate
the .bashrc file with the commands required to complete the configuration of the SaltBase
machine. The SaltBase_Install formula, in conjunction with the ​OS media mount​ and ​preseed
file​ above, will complete the conversion of the manual steps in Part I to an automated build
process of a SaltBase machine. This will result in a server which can auto-deploy a SaltBase
machine.

What remains to be completed?
● Helper scripts written to /root on the SaltBase machine

● Build libgit2 from source and install pygit2

● Configure devops config file for Salt

● Build placeholder for gitfs based sources

● Cleanup: removing the notification and application of the salt highstate at login

Build the SaltBase_Install Formula
Although the SaltBase_Install Formula will be downloaded to the PXE Server directly from our
github sources below, it’s worth looking at the formula in detail. The content of the dependent
files (those copied to the SaltBase machine using this salt formula) will be analyzed afterward.

Drop in the helper scripts.

saltbase_helper1:

 file.managed:

 - name: /root/enable_ssh.sh

 - user: root

 - group: root

 - mode: 755

 - source:

http://pxe.bobbarker.com/saltbase_install/enable_ssh.sh

 - skip_verify: true

saltbase_helper2:

 file.managed:

 - name: /root/newsalthostname.sh

 - user: root

 - group: root

 - mode: 755

 - source:

http://pxe.bobbarker.com/saltbase_install/newsalthostname.sh

 - skip_verify: true

saltbase_helper3:

 file.managed:

 - name: /root/setupnetwork.sh

 - user: root

 - group: root

 - mode: 755

 - source:

http://pxe.bobbarker.com/saltbase_install/setupnetwork.sh

 - skip_verify: true

This section drops in the helper scripts into the correct location on the SaltBase machine.

Build libgit2 from source to enable https access (No https access

using the main repo version)

build_prereq:

 pkg.installed:

 - refresh: True

 - pkgs:

 - build-essential

 - cmake

 - libssh2-1-dev

 - python-dev

 - python-pip

 - python-cffi

 - libssl-dev

 - libffi-dev

 - pkg-config

 - libcurl4-openssl-dev

 - libhttp-parser-dev

Install all the prerequisites enabling the build of libgit2 from source

build-libgit2:

 cmd.run:

 - name: |

 cd /tmp

 wget

https://github.com/libgit2/libgit2/archive/v0.25.0.tar.gz

 tar -zxf v0.25.0.tar.gz

 cd ./libgit2-0.25.0

 cmake .

 make

 make install

 ldconfig

 - cwd: /tmp

 - shell: /bin/bash

 - timeout: 300

 - unless: 'salt-call --versions-report | grep "libgit2:

0.25.0"'

 pip.installed:

 - name: pygit2==0.25.0

This section of the salt formula downloads and builds libgit2 from source. Notice the "unless"
line which first checks to see if the correct version of libgit2 is installed before proceeding.
The matching version of pygit2 is also installed in this section.

Configure Salt on the local machine by removing the saltbase

install config, adding the devops saltbase config,

adding the gitfs_remotes template, and cleaning up the .bashrc

file.

remove_install_config:

 file.absent:

 - name: /etc/salt/master.d/saltbase_install.conf

devops_config_install:

 file.managed:

 - name: /etc/salt/master.d/devops_standard.conf

 - user: root

 - group: root

 - mode: 644

 - source:

http://pxe.bobbarker.com/saltbase_install/devops_standard.conf

 - skip_verify: true

gitfs_remotes_template:

 file.managed:

 - name: /etc/salt/master.d/gitfs_remotes.conf

 - user: root

 - group: root

 - mode: 644

 - source:

http://pxe.bobbarker.com/saltbase_install/gitfs_remotes.conf

 - skip_verify: true

In this section the saltbase_install.conf is replaced by the devops_standard.conf configuration
file and a gitfs_remotes.conf placeholder file is added. The devops_standard.conf and
gitfs_remotes.conf files mirror the content found in the ​Add config changes for gitfs​ section of
Part I.

cleanup_bashrc:

 file.blockreplace:

 - name: /root/.bashrc

 - marker_start: "# START salt blockreplace"

 - marker_end: "# END salt blockreplace"

 - content: '# Initial config completed'

 - backup: False

Leveraging the START and END markers added to .bashrc in the preseed file, this final state
cleans things up by replacing the previous content with a completion comment. This
essentially means, if the entire saltbase_install formula succeeds, the automatic call of the
salt highstate in the .bashrc is removed and the next login will immediately proceed to a
prompt.

Drop the saltbase_install.sls salt formula into place
1. Download the saltbase_install.sls salt formula directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/manualconfig/saltbase_install.sls

Drop the helper scripts into place
1. Download the enable_ssh.sh script directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/enable_ssh.sh

2. Download the newsalthostname.sh script directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/newsalthostname.sh

3. Download the setupnetwork.sh script directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/setupnetwork.sh

Side Note:​ A detailed breakdown of the helper scripts can be found in ​Appendix A

Drop the salt config files into place
1. Download the devops_standard.conf configuration file directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/devops_standard.con

f

2. Download the gitfs_remotes.conf configuration file directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase/saltbase_install/gitfs_remotes.conf

Side Note:​ The content of the devops_standard.conf file can be found in the ​Understanding
the difference in Salt-Master configuration files​ in the preseed section above. The content of
the gitfs_remtoes.conf file can be found in the ​Add config changes for gitfs​ section of Part I.

Add Ubuntu 16.04 x64 Server
SaltBase to the PXE Boot Menu
Now that the configuration of the Ubuntu 16.04 x64 Server SaltBase is completed, we will need
to add a menu option on the PXE server for this configuration.

1. Edit the menu file

nano /var/lib/tftpboot/pxelinux.cfg/default

2. Add a section for the Ubuntu 16.04 x64 Server SaltBase install. (new lines in ​light green​)
(change the PXE URL to match the DNS name of the PXE server)

D-I config version 2.0

search path for the c32 support libraries (libcom32,

libutil etc.)

path ubuntu-installer/amd64/boot-screens/

include ubuntu-installer/amd64/boot-screens/menu.cfg

DEFAULT vesamenu.c32

PROMPT 0

TIMEOUT 300

MENU TITLE DevOps Awesome PXE Boot Menu

MENU AUTOBOOT Starting Local System in # seconds

LABEL bootlocal

 MENU LABEL ^1) Boot to Local Drive

 MENU DEFAULT

 LOCALBOOT 0

LABEL Ub1604x64Server

 MENU LABEL ^3) Ubuntu 16.04x64 Server SaltBase Install

 KERNEL ubuntu1604x64server/linux

 APPEND initrd=ubuntu1604x64server/initrd.gz

locale=en_US.UTF-8 keyboard-configuration/layoutcode=us

hostname=unassigned netcfg/choose_interface=auto

url=http://pxe.bobbarker.com/ub1604x64server.preseed

3. Save the file.

For those of you who noticed that Ub1604x64Server is menu item 3)
first: good attention to detail - second: ​no spoilers!

Testing the Installation of an Ubuntu 16.04 x64 Server SaltBase
machine via PXE
Verification of our first menu can be completed using VMWare Workstation Player. We’ll start
with a blank VM and verify netboot functionality.

1. Start VMWare Player and click the ​Create a New Virtual Machine​ button on the right.
2. Leave the radio button on ​I will install the operating system later​ and click ​Next​.
3. On the ​Guest Operating System​ window, change the radio button to ​Linux​ and change

the ​Version dropdown​ to ​Ubuntu 64-bit​. Click ​Next​.
4. On the ​Name the Virtual Machine​ window, change the values in the ​Virtual Machine

Name​ field and the ​Location​ field to fit your needs. Click ​Next​.
5. On the ​Specify Disk Capacity​ window, leave everything at the default and click ​Next​.
6. On the ​Name the Virtual Machine​ window, click on ​Customize Hardware​.

a. In the Hardware list, select​ Network Adapter​.
b. On the right hand side, under ​Network Connection​ section, change the radio

button to ​Bridged​.
c. Click the ​Close​ button to complete the modification of the Virtual Hardware.
d. Click the ​Finish​ button to complete the creation of the Virtual Machine.

7. In the Virtual Machine list on the left hand side, double click on the new VM.
8. The VM should start and, after a few moments, the PXE boot menu will appear.
9. Select the option to install the ​Ubuntu 16.04 x64 Server SaltBase​.
10. Wait until OS installation is finished, and login using the root.
11. The notification of final configuration will appear and the salt highstate will complete the

configuration of the machine. When completed, it will automatically reboot. Login again
using root.

12. Run the command to check that the master has correctly added the minion key. The
minion should be shown as accepted.

salt-key -L

13. Verify the versions of the installed packages

salt-master --version; salt-minion --version

14. Verify the status of the salt services

service salt-master status

service salt-minion status

15. Verify communication between the master and the minion using the command

salt '*' test.ping

Understanding the SaltBase Install over PXE
Although the manual steps of the PXE server installation are outlined above, detailing how a
machine would interact with the PXE server will help provide greater insight into the process as
a whole. Below is a detailed diagram for installing a SaltBase machine via PXE. This is
followed by a short key which adds detail to each of these steps.

Action Source /
Target Description

BIOS Boot
Selection Local Host / N/A

The BIOS of the machine will have an option for booting from
different sources. Shown here are booting to the Local OS as
well as netbooting to PXE.

DHCP
Discover

PXE Client /
Broadcast

The PXE Client sends out a DHCP Discover broadcast to the
network in an attempt to locate a local DHCP Server.

DHCP
Offer

DHCP Server /
PXE Client

The DHCP Server responds with a DHCP Offer of an available
IP address and boot server parameters.

DHCP
Request

PXE Client /
DHCP Server

The PXE client receives the offer and responds with a DHCP
Request for the IP address including an acknowledgement of
the boot server

DHCP
ACK

DHCP Server /
PXE Client

The DHCP Server sends an acknowledgement of the request
for the IP and issues a lease for the address.

DHCP
Request

PXE Client /
PXE Server

The PXE Client sends a DHCP request to the boot server (in
this case the PXE Server) for the boot server IP and the
bootstrap files.

DHCP
ACK

PXE Server /
PXE Client

The PXE Server sends an acknowledgement of the request
with the boot server IP and bootstrap file

TFTP
Transfer

PXE Client /
PXE Server

The PXE Client downloads the bootstrap files from the PXE
Server using the TFTP protocol. These will be used to boot
into the PXE Boot Menu

Boot N/A Once downloaded, the PXE client boots using the bootstrap
files into the PXE Menu..

PXE Menu Local Host / N/A The PXE Menu is hosted on the local machine. In this case
there are options for local boot as well as the SaltBase install.

TFTP
Transfer

Local Host /
PXE Server

Once selected, the SaltBase option will copy bootstrap files
from the PXE Server using the TFTP protocol. These will be
used to boot into the target OS.

Preseed /
OS Install

Local Host /
PXE Server

After the bootstrap copy is complete, the local host will access
the preseed file and the OS file system through the http service
on the PXE server. See ​Detailing the SaltBase build over PXE
below for a more detailed view of these steps.

Salt
Formula

Local Host /
PXE Server

Finally, the preseed file will chain load the Salt Formula from
the http service on the PXE Server. This formula will complete
the configuration of the SaltBase machine locally. See ​Detailing
the SaltBase build over PXE​ below for a more detailed view of
these steps.

Detailing the SaltBase Build over PXE
The table below tracks all the steps performed in Part I for the manual configuration of the
SaltBase build process, as well as adding new steps created as part of the automation effort.

Manual Install Step
OS

Media
Mount

Preseed
File

.bashrc Salt
Formula

Mounting the Ubuntu ISO for Installation X

Ubuntu Install: Keyboard Selection X

Ubuntu Install: Language Selection X

Ubuntu Install: Location / Timezone X

Ubuntu Install: Hostname X

Ubuntu Install: Config of temp user No longer required

Ubuntu Install: Partition Disk X

Ubuntu Install: Specify http proxy X

Ubuntu Install: Update Policy X

Ubuntu Install: Package Selection X

Ubuntu Install: Bootloader X

Basic Config: root password X

Basic Config: enable ssh for root Included in helper scripts

SaltStack: Add public repo key X

SaltStack: Add repo to sources list X

SaltStack: Install packages X

SaltStack: Update hosts file with salt entry X

SaltStack: Create the saltbase_install.conf X

SaltStack: Start the services These start at first boot

SaltStack: Accept minion keys on master This is now automated

SaltStack: Restart services No longer required

SaltStack: Create folder structure X

SaltStack: Add notification to .bashrc X

SaltStack: Add salt highstate to .bashrc X

.bashrc: Trigger salt highstate X

Helper Scripts: Download these X

gitfs: install build tools X

gitfs: download libgit2 source X

gitfs: compile libgit2 source X

gitfs: install pygit2 X

gitfs: Update devops_standard.conf No longer required

gitfs: Create gitfs_remotes.conf X

gitfs: Restart services No longer required

SaltStack: Create the devops_standard.conf X

New: Cleanup .bashrc X

Graphing the SaltBase Build over PXE
The diagram below helps summarize the major steps required to complete the SaltBase
installation over PXE

mount the Ubuntu Server x64 ISO

preseed

Ubuntu Install

Basic Config

SaltStack Installation

Populate .bashrc

boot

login as root

.bashrc Trigger salt highstate

salt
formula

Download helper scripts

gitfs installation

Secure SaltStack configuration

Cleanup .bashrc

reboot

Save Point: Export PXE Server to .ova

Creating a universal OVA template on Windows
In order to create an OVA template that will be
compatible with the maximum number of
hypervisors, use the following guidelines with
VMWare Workstation Player.

1. Ensure the VM version is no greater than
11. If it is greater, open the .vmx file in a
text editor and change the following line:

virtualHW.version = "11"

2. Open the virtual machine in VMWare Workstation Player (do not start the VM), edit the
VM settings, and remove the SATA CD-ROM device (if present). Close VMWare
Workstation Player.

3. Browse to the folder containing the VM
4. Open the .vmx file using a text editor
5. Find and remove all lines that include SATA or IDE, then save the .vmx file. Here are

some examples:

sata0.present = "TRUE"

sata0:1.present = "TRUE"

sata0:1.fileName = "C:\VMWare\ubuntu-16.04-server-amd64.iso"

sata0:1.deviceType = "cdrom-image"

Exporting the OVA Appliance on Windows
1. Find the path to your VM
2. Open a command prompt (elevated). ​NOTE:​ This

does not work in PowerShell.
3. Change to the OVFTool folder to execute the

ovftool command

cd "C:\Program Files

(x86)\VMware\VMware Player\OVFTool"

4. Convert your VM to an OVA Template

ovftool --compress=9 “C:\the path to your VM\your

VMname.vmx” "c:\new directory\name.ova"

The second finish line
The work above culminates in an infrastructure allowing any user to provision a SaltBase
machine through selection from a simple menu. This automates the manual process outlined in
Part I, ensuring a consistent and repeatable base on which to develop Salt. We can now
consider how a ​DevOps Development Cycle​ could look within the context of a SaltBase
machine, including local sources, remote gitfs sources, or a combination of both.

Part III: DevOps Development Cycle

Using the auto deployed SaltBase, the
detailed ​DevOps Development Cycle​ will be
documented. This development cycle will
suggest best practices and articulate the
benefits afforded by the Ubuntu +Salt + gitfs
+ PXE approach. This process can be
broken down into:

● Auto deployment of an Ubuntu 16.04
x64 Server SaltBase VM using the
PXE server

● Quick configuration of the basic

settings for the VM

● Configuration of the development
environment including both local and
remote SaltStack sources.

● Iterative development using Salt

● Validation of the salt source by

applying these states to a fresh VM

● Deployment of the application

Approach to Development
Leveraging the PXE server created in Part II, we can deploy to any machine that can netboot
using PXE. That said, a development cycle is best served taking advantage of the benefits
offered by virtualization- namely the ability to easily create multiple machines in rapid
succession. As such, we will be deploying the SaltBase to a VM during the development cycle
but will consider accommodations for other deployment options as part of this process.

Side Note:​ As a quick review, or for those who need a bit of context developing salt, this
might be a good time to glance through the ​Salt Development Backgrounder​ in Appendix B.

Step 1: Auto Deploy a SaltBase Image
1. Start VMWare Player
2. Click the ​Create a New Virtual Machine​ button

on the right.
3. Leave the radio button on ​I will install the

operating system later​ and click ​Next​.
4. On the ​Guest Operating System​ window,

change the radio button to ​Linux​ and change the ​Version dropdown​ to ​Ubuntu 64-bit​.
Click ​Next​.

5. On the ​Name the Virtual Machine​ window, change the values in the ​Virtual Machine
Name​ field and the ​Location​ field to fit your needs. Click ​Next​.

6. On the ​Specify Disk Capacity​ window, leave everything at the default and click ​Next​.
7. On the ​Name the Virtual Machine​ window, click on ​Customize Hardware​.

a. In the Hardware list, select​ Network Adapter​.
b. On the right hand side, under ​Network Connection​ section, change the radio

button to ​Bridged​.
c. Click the ​Close​ button to complete the modification of the Virtual Hardware.
d. Click the ​Finish​ button to complete the creation of the Virtual Machine.

8. In the Virtual Machine list on the left hand side, double click on the new VM.
9. The VM should start and after a moment the PXE boot menu should be shown

displaying two options, the first for ​local boot​, and the second for installation of an
Ubuntu 16.04 x64 Server SaltBase​.

10. Select the option to install the ​Ubuntu 16.04 x64 Server SaltBase​.
11. Wait until OS installation is finished, and login using the root.
12. The notification of final configuration will appear and the salt highstate will complete the

configuration of the machine. When completed, it will automatically reboot. Login again
using root.

Step 2: Setup the machine
Once the machine is imaged, it's time to login and
customize. We will use the ​helper scripts​ to simplify this
process and get the machine rapidly configured.

setupnetwork.sh
This script, located in /root, configures the eth0 (14.04) or enXXXX (16.04) adapter to either:

1. a static IP address
2. DHCP configuration

Once configured, the script restarts the Ethernet device in order to apply the configuration. ​For
Ubuntu v16.04 a reboot may be necessary to apply static IP address changes.

Usage:

/root/setupnetwork.sh

enable_ssh.sh
By default in Ubuntu 14.04 and above, the root user is not allowed to connect via SSH by
default. This script, located in /root, ensures openssh-server is installed, enables connections
for the root user, and restarts the service.

Usage:

/root/enable_ssh.sh

newsalthostname.sh
This script, located in /root, changes the hostname of the machine. This script simplifies this
process by making the necessary changes to /etc/hostname, /etc/hosts, and /etc/salt/minion.id.
Since these machines are self-mastered (both a Salt minion and a Salt master), this script also
ensures that the security key associated between the two is updated as part of this process.

Usage:

/root/newsalthostname.sh

Step 3: Setup development and external formulas
While developers may have a process they prefer, we're
going to start with a simple approach that leverages both
code reuse and rapid development cycles. This section
will also illustrate configuration of a development
environment using salt formulas sourced from different
gitfs repositories.

To help rapidly develop Salt, we need to be able to edit source and immediately test this Salt by
applying it locally to the minion. Additionally, best practices should be followed where code is
properly committed to a repository. The combination of these two requirements can be
expressed using the workflow below.

Create an empty git repo
This will require access to a git server which can be either private or public. If you don’t have
access to a git server, several online services offer a free tier for open source projects, like
GitHub​. Once you have established access to a git server, create an empty repository, taking
note of the clone URL. This repository will house the Salt source developed on this machine.

Setup a local development environment
We’ll now create a local development folder which will be integrated with source control.

1. Although the SaltBase machine auto deploys with the /srv folder created, we will need to
clone our git repository into an empty folder. As such, we’ll move the contents of the /srv
folder to a new location.

mkdir /tmp/salttemp

mv -R /srv/* /tmp/salttemp/

2. Next, the git repo created above should be cloned into this folder (replace the URL with
the clone URL of the repo created above)

git clone https://gitsource.bobbarker.com/happy.git /srv

3. The contents can now be moved back into place

mv -R /tmp/salttemp/* /srv/

https://github.com/pricing

Build and Test
Now that the development environment is established, we can begin developing our first
formula. We’ll start with a single, simple state and test this formula to ensure everything is
working as expected.

1. Create a new formula

nano /srv/salt/packageupgrade.sls

2. Add the following content to the file and ​save​ the formula (note the spacing)

Refresh package manager

update_os:

 pkg.uptodate:

 - refresh: true

3. Edit the ​top.sls​ file to add the name of the formula created above. This will direct Salt to
use the new formula during a highstate.

nano /srv/salt/top.sls

4. Add the following content to top.sls and ​save​ the file. (Note that we reference the
formula ​name and not the ​state ​name) ​(new content in ​light green​)

base:

 '*':

 - packageupgrade

5. Restart the salt-master so that it picks up the new top.sls file. Note that the salt-master
only needs to be restarted when new formulas are added to the top.sls file. This step is
not required when simply making changes to formulas already called out by top.sls.

service salt-master restart

6. Finally, we run a highstate to ensure that the formula is applied correctly

salt '*' state.highstate

At this point, Salt should attempt to perform an “​apt update; apt upgrade ​” and report
back results. Assuming the results are positive, this validates the locally developed formula as
well as the functionality of the salt-minion and salt-master.

Add an external formula
With the basic formula built and tested, we can now expand our Salt to include an external
formula from a gitfs source. (This is similar to the process covered above in ​Apply a state from
a gitfs source​) For simplicity, this formula would have no dependencies and should not impact
other software installed at a later time. In this case, we’ll install ​fail2ban​.

1. Open our gitfs_remotes.conf file for editing

nano /etc/salt/master.d/gitfs_remotes.conf

2. Remove the # in front of gitfs_remotes:, add the following content, and ​save​ the file.
(new content in ​light green​)

gitfs_remotes:

- https://gitsource.bobbarker.com/happy.git:

- user: for protected sources

- password: for protected sources

- root: salt

 - https://github.com/saltstack-formulas/fail2ban-formula.git

3. Edit the top file to include the new formula

nano /srv/salt/top.sls

4. Add the following content to top.sls and ​save​ the file. ​(new content in ​light green​)

base:

 '*':

 - packageupgrade

 - fail2ban

5. Restart the Salt master in order to pick up these changes:

service salt-master restart

6. Update the local cache of the remote sources (should return ​TRUE​):

salt-run fileserver.update

7. Finally, we run a highstate and ensure that the formula is applied correctly

salt '*' state.highstate

At this point, Salt should attempt to apply both formulas to the salt-minion and report back
results. Assuming the results are positive, this validates using formulas from both local sources
and remote gitfs sources.

https://github.com/saltstack-formulas/fail2ban-formula.git

Step 4: Iterate
With the source now tested, active development can
begin.

Build, Test, Add, Commit
The development cycle can essentially be expressed as

build Edit the Salt source locally on the machine. ​See the ​Build and Test​ section
above.

test Validate the source by running a highstate and verifying the results. ​See the ​Build
and Test​ section above.

add

In order to add new content to source control using git, the “git add” command
should be used. For example, after a new formula is created within /srv/salt, it
needs to be added to source control in order for changes to be tracked. While
there are many different ways of running the “git add” command, the easiest is to
simply add all files not already in source control to the next commit using the *
wildcard..

Usage

git add *

commit

The “git commit” command commits the staged snapshot to the project history. It
is often easiest to use the “-m” switch, allowing the developer to directly add a
commit message to the command itself. If “-m” is omitted, a text editor will be
launched to record the commit message separately.

Usage

git commit -m ​"<message>"

Once the source is committed, the developer can return to the build step and resume
developing the Salt. This process allows for rapid iteration on source code while ensuring
revision history on the Salt in question.

Side Note:​ While developing, it can be easy to lose track of which files have been added,
updated, and committed. In these cases, the helpful command ​git status ​ will provide a
detailed synopsis of the current file set within the context of git source control.

Usage

git status

Push
Finally, once the Salt has reached a stable point, it’s a good idea to update the git repository
with all the commits made during the development cycle.

push

This will push all commits made to the source up to the git server. It is important
to note that commits are ​only stored on the local machine​ until this command is
run.

Usage

git push origin master

Origin ​points to the repository from which the local copy of the repository was
cloned. ​Master ​refers to the branch being pushed, in this case the master, or
most recent branch. Note that this will also push all commits to the ​Origin ​which
have been made since the last push command.

Side Note:​ The git workflow outlined above is kept purposefully lean. While this technically
works for a single developer, multiple contributors will likely cause conflicts in the source. For
a good understanding of managing more complex git workflows, see this great ​tutorial by
Atlassian​.

https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows

Step 5: Validate
Now that the source has been fully updated on the git
server, we can validate the Salt using another machine.

Why Validate?
Developing using Salt is easy and flexible. States can be applied over and over until a machine
reaches the desired configuration. While these advantages can streamline the development
process, they don’t protect against the developer manually configuring the machine ​in tandem
with Salt. Validation of the Salt using a fresh machine ensures that the only configuration
applied to the machine originates in the Salt source.

Auto Deploy
Follow the steps above in the ​Auto Deploy a SaltBase Image​ to setup a new VM.

Setup
Follow the steps above in the ​Setup the machine​ to configure the new VM.

Add Development Formula and Test
We now want to add the development formula pushed to the server in the previous step to the
new VM. This will allow validation of the Salt by configuring the new VM exclusively from the
Salt located on the git server

1. Open our gitfs_remotes.conf file for editing

nano /etc/salt/master.d/gitfs_remotes.conf

2. Remove the # in front of gitfs_remotes:, add the following content, and ​save​ the file.
(new content in ​light green​) ​(replace the URL with the clone URL of the repo)

gitfs_remotes:

- https://gitsource.bobbarker.com/happy.git:

- user: for protected sources

- password: for protected sources

- root: salt

 - ​https://gitsource.bobbarker.com/happy.git

3. Edit the top file to include the new formula

nano /srv/salt/top.sls

4. Add all of the development formulas to top.sls and ​save​ the file. ​(new content in ​light
green​)

base:

 '*':

 - packageupgrade

 - getmcgavin

 - etc

5. Restart the Salt master in order to pick up these changes:

service salt-master restart

6. Update the local cache of the remote sources (should return ​TRUE​):

salt-run fileserver.update

7. Finally, we run a highstate to complete the validation.

salt '*' state.highstate

At this point, Salt should attempt to apply all the remote formulas listed in top.sls to the fresh VM
and return results. Assuming the results are positive, this validates the Salt and we can move
onto the final step, ​deploying to production​.

Overview
Before covering deployment scenarios for production, it is helpful to summarize the SaltBase
development environment through use of a diagram.

Deployment Methods
With the Salt fully validated, the application can be deployed to production.

Deploying to a VM
While other deployments are possible, the most likely option is deployment to a VM.

The requirements are simple, the target hypervisor and VM only need to have netboot enabled
for the virtual network adapter. Although each hypervisor may vary the approach for
configuration, a good summary of the procedure can be found above in ​Step 1: Auto Deploy a
SaltBase Image​.

Deploying to Bare Metal
One of the advantages in using PXE for Auto deployment of a SaltBase machine, is the
possibility to deploy to bare metal. With the availability of virtualization and containers,
deployment to bare metal may seem a curious choice. In those situations where an engineer
needs to directly connect a machine to a Device Under Test, a bare metal deployment can be
quite useful.

The requirements for deploying to bare metal are quite simple: the hardware in question needs
a network card capable of PXE boot. Almost all modern hardware will include this capability in
the NIC, but enabling netboot may need to be performed in the BIOS before this feature is
exposed.

Creating an .ova template
In cases where the target host for production deployment has strict network requirements (or
limited network access), deploying first to an .ova and delivering this template to the target
hardware is a possibility. This approach still has the advantage of the programmatic
configuration of a machine through the use of Salt, which ensures consistency and stability for
the deployment.

The procedure for deploying to an .ova has been covered above, both at the ​end of Part I​ as
well as the ​end of Part II​. These sections can be used as reference for the .ova template
procedure.

PXE Feature Add
With the completed build of the Ub1604x64Server PXE boot option from ​Part II​, we can use this
effort as a template and extend the functionality of the PXE server by adding additional boot
options. While a multitude of options exist, we have focused our approach on (3) new menu
items which offer complimentary features and address a wide variety of needs within a DevOps
environment. We will be adding options for:

● A live boot for testing system memory (Memtest)
● A SaltBase build based on an older version of Ubuntu (Ub1404x64Server)
● A live boot of the most recent Ubuntu LTS desktop environment (Ub1604x64Live)

Looking at this approach from a high level, these features will be added to the existing PXE
structure we completed in Part II. This means we need not cover any content on PXE
configuration but can instead focus on the configuration of each new menu item. The following
diagram summarizes the PXE boot Menu with the additional features.

Memtest
The simplest addition to our PXE boot menu is a live
boot of memtest86+. Memtest86+ is a simple,
open-source piece of software designed to detect and
report problems with host memory. This software can be
downloaded in several different configurations, one of
which is a bootable binary kernel. Since this approach
requires no mounting of an ISO, it requires only minimal
effort to implement within PXE and is therefore the first
additional feature we'll add to the PXESaltBase
configuration.

memtest.bin
1. In order to boot to the memtest86+ kernel, we

simply need to download the bootable kernel to a
known location on the PXE file system.

wget -P /var/lib/tftpboot/memtest/

http://www.memtest.org/download/5.01/memtest86+-5.01.bin

2. Next we simply rename the file to make it a neutral, non-versioned name.

mv /var/lib/tftpboot/memtest/memtest86+-5.01.bin

/var/lib/tftpboot/memtest/memtest

Add Memtest to the PXE Boot Menu
We need to add the memtest option to the PXE Boot Menu.

1. Edit the menu file

nano /var/lib/tftpboot/pxelinux.cfg/default

2. Add a section for the memtest boot option to the existing menu. (new lines in ​light green​)

D-I config version 2.0

search path for the c32 support libraries (libcom32,

libutil etc.)

path ubuntu-installer/amd64/boot-screens/

include ubuntu-installer/amd64/boot-screens/menu.cfg

DEFAULT vesamenu.c32

PROMPT 0

TIMEOUT 300

MENU TITLE DevOps Awesome PXE Boot Menu

MENU AUTOBOOT Starting Local System in # seconds

LABEL bootlocal

 MENU LABEL ^1) Boot to Local Drive

 MENU DEFAULT

 LOCALBOOT 0

LABEL Ub1604x64Server

 MENU LABEL ^3) Ubuntu 16.04x64 Server SaltBase Install

 KERNEL ubuntu1604x64server/linux

 APPEND initrd=ubuntu1604x64server/initrd.gz

locale=en_US.UTF-8 keyboard-configuration/layoutcode=us

hostname=unassigned netcfg/choose_interface=auto

url=http://pxe.bobbarker.com/ub1604x64server.preseed

LABEL Memtest

 MENU LABEL ^5) Memtest

 ROOT (hd0,0)

 KERNEL memtest/memtest

3. Save the file.

Test Memtest PXE Boot
1. On the network with the PXE server, boot any machine (it needs to be a physical

machine and not a VM), making sure to use the network boot option.
2. After a few moments the PXE boot menu will appear.
3. Select the option to boot to ​memtest​.
4. Let this program run, testing your system memory for errors.

Older Ubuntu Version
In some cases, the most recent LTS release of Ubuntu
may not be the optimal choice. In this case, allowing
installation of a SaltBase machine based on the previous
LTS build is a good alternate solution. Installation of an
Ubuntu 14.04 x64 Server SaltBase machine will include
a large overlap with much of the content from ​Part II​. In
this case we need only call out those areas where the
configuration of 14.04 is a departure from 16.04, while
avoiding repetition of previous documentation.

Ubuntu 14.04 x64 Server ISO + Config

Get and Mount the ISO image
As explained ​above​ since we are never writing to the file
system of the ISO file we can mount the ISO directly
without needing to copy the contents to the mount point.

1. Download the Ubuntu 14.04 x64 Server ISO to
the local drive

wget -P /media/

http://releases.ubuntu.com/14.04.5/ubuntu-14.04.5-server-amd

64.iso

2. Create the mount point for the ISO file inside the root folder of apache.

mkdir ​/var/www/html/ubuntu1404x64server

3. Add a mount line to the server’s fstab file

echo ​"/media/ubuntu-14.04.5-server-amd64.iso
/var/www/html/ubuntu1404x64server iso9660 loop 0 0"

>> /etc/fstab

4. Mount all the points in the fstab file

mount -a

5. Verify that the ISO is correctly mounted

mount

SaltBase Bootstrap files
In order to boot the ISO, we first need to make the kernel and RAMdisk (which correspond to
the ISO we are booting) available to the tftp server installed on PXE. These will be copied into a
folder which will encapsulate this option for PXE.

1. Create the containing folder for this boot option

mkdir ​/var/lib/tftpboot/ubuntu1404x64server

2. Copy the kernel and RAMdisk into this folder. We use http here a) to verify apache is
functioning correctly and b) because http sources are easier to express in salt (we’ll see
the advantage of this later once we convert these manual steps to salt states).

wget -P /var/lib/tftpboot/ubuntu1404x64server/

http://127.0.0.1/ubuntu1404x64server/install/netboot/ubuntu-

installer/amd64/linux

wget -P /var/lib/tftpboot/ubuntu1404x64server/

http://127.0.0.1/ubuntu1404x64server/install/netboot/ubuntu-

installer/amd64/initrd.gz

Apt source file
The apt source for the updated salt packages needs to be written to the PXE server.

1. Add the repo to the sources list (14.04)

echo deb

http://repo.saltstack.com/apt/ubuntu/14.04/amd64/latest trusty

main >> /var/www/html/saltbase_install/new1404saltstack.list

Automated Ubuntu install using Preseed File
The ​preseed​ file for Ubuntu 14.04 x64 Server is based off the same ​preseed template​ and with
be functionally identical to that of the ​preseed file for Ubuntu 16.04 x64 Server​. As such, we
can distill our documentation down to only those areas where the 14.04x64 Server and the
16.04x64 Server preseed files diverge. (differences in ​light green​)

Line 483 - 484

Original (NULL)

ub1604x64server d-i preseed/late_command string \

in-target sed -i 's|127.0.1.1.*|127.0.1.1 ub1 ​4 ​04x64SvrSaltBase
salt|g' /etc/hosts; \

Details Ensure the machine being built is self-mastered by adding the salt name
to /etc/hosts

Line 488 - 490

Original (NULL)

ub1604x64server in-target wget -P /tmp/

https://repo.saltstack.com/apt/ubuntu/1 ​4 ​.04/amd64/latest/SALTSTACK-GPG-K
EY.pub; \

in-target apt-key add /tmp/SALTSTACK-GPG-KEY.pub; \

in-target wget -P /etc/apt/sources.list.d/

http://pxe.bobbarker.com/saltbase_install/new1 ​4 ​04saltstack.list; \

Details The SaltStack packages in the Ubuntu repository are woefully out of date.
Add the apt-key and the link to the latest salt packages. Note the
new1404saltstack.list file contains the pointer to the SaltStack package
repository for Ubuntu 14.04 x64.

https://help.ubuntu.com/lts/installation-guide/example-preseed.txt

Line 493 - 494

Original (NULL)

ub1604x64server echo "ub1 ​4 ​04x64SvrSaltBase" > /target/etc/hostname; \
echo "ub1 ​4 ​04x64SvrSaltBase" > /target/etc/salt/minion_id; \

Details Apply a new name to both the hostname and minion_id files

Drop the Preseed File into place
1. Download the preseed file directly from our github source

wget ​-P ​/var/www/html/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/manualconfig/ub1404x64server.preseed

Complete Configuration Using the SaltBase_Install Formula
One of the many advantages to using salt is the obfuscation provided within the salt states.
Whereas a script might differ slightly between Ubuntu 14.04 and Ubuntu 16.04, salt can allow
for a single formula to perform the same functions across versions (or distributions). In this
case, the salt formula for the Ubuntu 14.04x64 installation is identical to that of the Ubuntu
16.04x64 installation. As such, no additional files are required to be written to the host. The salt
highstate will be initiated in the same way as with Ubuntu 16.04x64, through the .bashrc,
completing the configuration of the SaltBase machine on 14.04x64.

Adding Ubuntu 14.04 x64 Server SaltBase to the PXE Boot Menu
We need to add the Ubuntu 14.04 x64 Server SaltBase option to the PXE Boot Menu.

1. Edit the menu file

nano /var/lib/tftpboot/pxelinux.cfg/default

2. Add a section for the memtest boot option to the existing menu. (new lines in ​light green​)

D-I config version 2.0

search path for the c32 support libraries (libcom32,

libutil etc.)

path ubuntu-installer/amd64/boot-screens/

include ubuntu-installer/amd64/boot-screens/menu.cfg

DEFAULT vesamenu.c32

PROMPT 0

TIMEOUT 300

MENU TITLE DevOps Awesome PXE Boot Menu

MENU AUTOBOOT Starting Local System in # seconds

LABEL bootlocal

 MENU LABEL ^1) Boot to Local Drive

 MENU DEFAULT

 LOCALBOOT 0

LABEL Ub1604x64Server

 MENU LABEL ^3) Ubuntu 16.04x64 Server SaltBase Install

 KERNEL ubuntu1604x64server/linux

 APPEND initrd=ubuntu1604x64server/initrd.gz

locale=en_US.UTF-8 keyboard-configuration/layoutcode=us

hostname=unassigned netcfg/choose_interface=auto

url=http://pxe.bobbarker.com/ub1604x64server.preseed

LABEL Ub1404x64Server

 MENU LABEL ^4) Ubuntu 14.04x64 Server SaltBase Install

 KERNEL ubuntu1404x64server/linux

 APPEND initrd=ubuntu1404x64server/initrd.gz

locale=en_US.UTF-8 keyboard-configuration/layoutcode=us

hostname=unassigned netcfg/choose_interface=auto

url=http://pxe.bobbarker.com/ub1404x64server.preseed

LABEL Memtest

 MENU LABEL ^5) Memtest

 ROOT (hd0,0)

 KERNEL memtest/memtest

3. Save the file.

Testing the Installation of an Ubuntu 14.04 x64 Server SaltBase machine
via PXE
Verification of our first menu can be completed using VMWare Workstation Player. We’ll start
with a blank VM and verify netboot functionality.

1. Start VMWare Player and click the ​Create a New Virtual Machine​ button on the right.
2. Leave the radio button on ​I will install the operating system later​ and click ​Next​.
3. On the ​Guest Operating System​ window, change the radio button to ​Linux​ and change

the ​Version dropdown​ to ​Ubuntu 64-bit​. Click ​Next​.
4. On the ​Name the Virtual Machine​ window, change the values in the ​Virtual Machine

Name​ field and the ​Location​ field to fit your needs. Click ​Next​.
5. On the ​Specify Disk Capacity​ window, leave everything at the default and click ​Next​.
6. On the ​Name the Virtual Machine​ window, click on ​Customize Hardware​.

a. In the Hardware list, select​ Network Adapter​.
b. On the right hand side, under ​Network Connection​ section, change the radio

button to ​Bridged​.
c. Click the ​Close​ button to complete the modification of the Virtual Hardware.
d. Click the ​Finish​ button to complete the creation of the Virtual Machine.

7. In the Virtual Machine list on the left hand side, double click on the new VM.
8. The VM should start and after a few moments the PXE boot menu will appear.
9. Select the option to install the ​Ubuntu 14.04 x64 Server SaltBase​.
10. Wait until OS installation is finished, and login using the root.
11. The notification of final configuration will appear and the salt highstate will complete the

configuration of the machine. When completed, it will automatically reboot. Login again
using root.

12. Run the command to check that the master has correctly added the minion key. The
minion should be shown as accepted.

salt-key -L

13. Verify the versions of the installed packages

apt-show-versions salt-master salt-minion

14. Verify the status of the salt services

service salt-master status

service salt-minion status

15. Verify communication between the master and the minion using the command

salt '*' test.ping

Live Boot Ubuntu 16.04 x64 Desktop
One of the most useful additions to the PXE Server is
inclusion of an Ubuntu Live Boot option. With live boot, a
user can perform maintenance on an existing OS drive
(like manipulating the partition table with gparted) along
with many other helpful tasks. Configuration and use of
this option through PXE requires some additional
configuration beyond that with which the previous options
have been built. As such, this section was left until last
as it adds one final layer to our configuration.

Ubuntu 16.04 x64 Desktop ISO + Config

Get and Mount the ISO image
As explained ​above​ since we are never writing to the file
system of the ISO file we can mount the ISO directly
without needing to copy the contents to the mount point.

1. Download the Ubuntu 16.04 x64 Desktop ISO to
the local drive

wget -P /media/

http://releases.ubuntu.com/16.04.2/ubuntu-16.04.2-desktop-am

d64.iso

2. Create the mount point for the ISO file inside the root folder of apache.

mkdir ​/var/www/html/ubuntu1604x64live

3. Add a mount line to the server’s fstab file

echo ​"/media/ubuntu-16.04.2-desktop-amd64.iso
/var/www/html/ubuntu1604x64live iso9660 loop 0 0"

>> /etc/fstab

4. Mount all the points in the fstab file

mount -a

5. Verify that the ISO is correctly mounted

mount

SaltBase Bootstrap files
In order to boot the ISO, we first need to make the kernel and RAMdisk (which correspond to
the ISO we are booting) available to the tftp server installed on PXE. These will be copied into a
folder which will encapsulate this option for PXE.

1. Create the containing folder for this boot option

mkdir ​/var/lib/tftpboot/ubuntu1604x64live

2. Copy the kernel and RAMdisk into this folder. We use http here a) to verify apache is
functioning correctly ans b) http sources are easier to express in salt.

wget -P /var/lib/tftpboot/ubuntu1604x64live/

http://127.0.0.1/ubuntu1604x64live/install/netboot/ubuntu-in

staller/amd64/linux

wget -P /var/lib/tftpboot/ubuntu1604x64live/

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-

installer/amd64/initrd.gz

NFS Config + .bashrc

Install and Configure nfs
In addition to having files mounted on tftp and http (apache), the live boot configuration also
requires nfs. As such we’ll need to install the nfs package and perform some basic
configuration.

1. Install the nfs package

apt install -y nfs-kernel-server

2. Add a line to /etc/exports for mounting the Ubuntu 16.04x64 Desktop ISO using nfs.

echo ​"/var/www/html/ubuntu1604x64live/ *
(ro,sync,no_wdelay,insecure_locks,no_root_squash,insecure)"

>> /etc/exports

3. Verify the file contains the expected content

tail /etc/exports

4. Reload the nfs service in order to pick up the new mount point

service nfs-kernel-server restart

Fix the nfs mount in the PXE boot menu with .bashrc

When using nfs for mounting the live boot media, there is a limitation on the mount point within
the PXE Boot Menu. ​BusyBox​, which is leveraged as part of the live boot process, will ​not​ work
with DNS names when looking for nfs mount points. As such, we need to replace the nfsroot
line in the PXE menu with one that contains the ​IP address​ of the server (which is resolved as
part of the replacement process). Dropping this into .bashrc of the PXE boot server ensures that
each time the machine is rebooted, the IP of the system is resolved and the PXE boot menu is
correctly updated. Also note that we are performing some logic to determine the name of the
ethernet adapter. This code should be backward compatible for older versions of Ubuntu which
use “eth0” for the default network adapter name.

1. Edit /root/.bashrc

nano /root/.bashrc

2. Add the following contents to the end of the file and save:

The following commands fix the nfsroot call in defaults.

Busybox will not resolve the hostname so we are restricted

to using the IP only.

if (grep eth0 /etc/network/interfaces)

then

ethname="eth0" #Found eth0

else

ethname=`ifconfig | grep -w -m 1 en.... | awk '{print

$1;}'` #Derived Ethernet interface name

fi

localpxeip=`/sbin/ifconfig $ethname | grep 'inet addr:' |

cut -d: -f2 | awk '{ print $1 }'`

sed -i "s|nfsroot.*:|nfsroot=$localpxeip:|g"

/var/lib/tftpboot/pxelinux.cfg/default

Add Ubuntu 16.04 x64 Live Boot to the PXE Boot Menu
We need to add the Ubuntu 16.04 x64 Desktop Live Boot option to the PXE Boot Menu.

1. Edit the menu file

nano /var/lib/tftpboot/pxelinux.cfg/default

2. Add a section for the memtest boot option to the existing menu. (new lines in ​light green​)

D-I config version 2.0

search path for the c32 support libraries (libcom32,

libutil etc.)

https://busybox.net/about.html

path ubuntu-installer/amd64/boot-screens/

include ubuntu-installer/amd64/boot-screens/menu.cfg

DEFAULT vesamenu.c32

PROMPT 0

TIMEOUT 300

MENU TITLE DevOps Awesome PXE Boot Menu

MENU AUTOBOOT Starting Local System in # seconds

LABEL bootlocal

 MENU LABEL ^1) Boot to Local Drive

 MENU DEFAULT

 LOCALBOOT 0

LABEL Ub1604x64Live

 MENU LABEL ^2) Ubuntu 16.04x64 Desktop Live Boot

 KERNEL ubuntu1604x64live/vmlinuz.efi

 APPEND vga=normal boot=casper rootfstype=nfs netboot=nfs

nfsroot=pxe.bobbarker.com:/var/www/html/ubuntu1604x64live/

initrd=ubuntu1604x64live/initrd.lz splash --

LABEL Ub1604x64Server

 MENU LABEL ^3) Ubuntu 16.04x64 Server SaltBase Install

 KERNEL ubuntu1604x64server/linux

 APPEND initrd=ubuntu1604x64server/initrd.gz

locale=en_US.UTF-8 keyboard-configuration/layoutcode=us

hostname=unassigned netcfg/choose_interface=auto

url=http://pxe.bobbarker.com/ub1604x64server.preseed

LABEL Ub1404x64Server

 MENU LABEL ^4) Ubuntu 14.04x64 Server SaltBase Install

 KERNEL ubuntu1404x64server/linux

 APPEND initrd=ubuntu1404x64server/initrd.gz

locale=en_US.UTF-8 keyboard-configuration/layoutcode=us

hostname=unassigned netcfg/choose_interface=auto

url=http://pxe.bobbarker.com/ub1404x64server.preseed

LABEL Memtest

 MENU LABEL ^5) Memtest

 ROOT (hd0,0)

 KERNEL memtest/memtest

4. Save the file.
5. Logoff / Login to ​update the PXE menu using .bashrc

Test Live Boot of Ubuntu 16.04 x64 using PXE
1. On the network with the PXE server, boot any machine,

making sure to use the network boot option.
2. After a few moments the PXE boot menu will appear.
3. Select the option to boot to ​Ubuntu 16.04x64 Desktop

Live Boot​.
4. If prompted, choose ​Try Ubuntu​ to boot into the Live OS.

Dogfooding: SaltStack build of PXE
What better way to fully test the procedures above, than to build a ​new ​PXESaltBase machine
using this very infrastructure? In this section we’ll migrate from our manual build to an
automated build using salt, step through the required changes in the pillar, walk through the
build process, and verify the deployment through testing.

The SaltBase PXE Server File Tree
A good way to start conceptualizing the automated build of the SaltBase PXE server, is to list all
the files required and consider a) what can be brought over directly from manual processes b)
what can be brought over but variablized using jinja and c) what needs to be created new for
automation. In addition to color coding based on these categories, the files below contain links
to the creation process for each file in this document.

File Tree Key

pxesaltbase

│ ​.bashrc
│ ​default
│ ​exports
│ ​init.sls
│ ​tftpd-hpa
│ ​ub1404x64server.preseed
│ ​ub1604x64server.preseed
│

└───​saltbase_install
 ​devops_standard.conf
 ​enable_ssh.sh
 ​gitfs_remotes.conf
 ​new1404saltstack.list
 ​new1604saltstack.list
 ​newsalthostname.sh
 ​saltbase_install.conf
 ​saltbase_install.sls
 ​setupnetwork.sh
 ​top.sls

Carried over from
manual processes

Variablized using jinja

New for Automation

Migrating PXE from manual to auto deployment
Using the entirety of the manual steps within this document, we will migrate all build processes
to salt, enabling a PXE server which can be automatically deployed directly from gitfs. The
following sections will detail the files added or changed as part of this automation process
(orange and green highlights above)

Salt for PXE server (init.sls)
The easiest way to map the conversion of this process from manual steps to salt is to simply
study each section of the salt formula and ensure that all steps in the manual process are
accounted for. The salt for our pxesaltbase formula is located here:
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/mast

er/pxesaltbase/init.sls ​.

Salt: PXE Package Install

Install the packages required for PXE

pxe_packages:

 pkg.installed:

 - refresh: True

 - pkgs:

 - apache2

 - tftpd-hpa

 - nfs-kernel-server

● pkg.installed ​ simply installs packages to the OS using the built in package manager.

● refresh: True ​ refreshes the available package list before performing the installation.

● Apache 2 is required to allow for mounting of ISOs, pressed files, salt formulas, and other
files

● tftpd-hpa is required for the basic functionality of any PXE server. See ​Part II manual
install

● nfs-kernel-server is required for ISO mounting for the live boot option

Salt: Configure the TFTP Server

Configure the TFTPD-hpa service for serving the menu and kernels

tftpd_config:

 file.managed:

https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/init.sls
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/init.sls

 - name: /etc/default/tftpd-hpa

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/tftpd-hpa

 service.running:

 - name: tftpd-hpa

 - reload: true

 - watch:

 - file: /etc/default/tftpd-hpa

● file.managed ​ pulls a file from source, writes it to the minion (if it is different from the
local copy), and applies ownership and permission changes. In this case the
configuration of the tftpd-hpa server​ is ready to be dropped into place. Looking at the
source line, we see that it uses a ​salt://pxesaltbase ​ URL, which means the file is
stored in the same folder as the salt formula.

● service.running ​ watches the tftpd-hpa config file and, if salt changes it, it will restart
the tftpd-hpa service. Since the above ​file.managed ​ state will only apply changes to
the file the first time the salt is applied, the tftpd-hpa service only needs to be restarted on
this trigger event.

Salt: Ubuntu 16.04 Live Boot

Setting up ubuntu-16.04-desktop-amd64 live as a boot option

Grab the ISO from the Ubuntu site

get_ub1604x64desktop_iso:

 file.managed:

 - name: /media/ubuntu-16.04.2-desktop-amd64.iso

 - user: root

 - group: root

 - mode: 644

 - source:

http://releases.ubuntu.com/16.04.2/ubuntu-16.04.2-desktop-amd64.iso

 - source_hash:

sha256=0f3086aa44edd38531898b32ee3318540af9c643c27346340deb2f9bc1c3

de7e

Mount the ISO using the loop option. Since this is supposed to

be read only media, we don't need to copy files locally.

mount_ub1604x64desktop_iso:

 file.directory:

 - name: /var/www/html/ubuntu1604x64live

 mount.mounted:

 - name: /var/www/html/ubuntu1604x64live

 - device: /media/ubuntu-16.04.2-desktop-amd64.iso

 - fstype: iso9660

 - opts:

 - loop

After the ISO is mounted, the kernel and ramdisk need to be

copied from apache to the local TFTP Server to enable this image to

PXE boot

ub1604x64desktop_kernel:

 file.managed:

 - name: /var/lib/tftpboot/ubuntu1604x64live/vmlinuz.efi

 - user: root

 - group: root

 - mode: 644

 - source: http://127.0.0.1/ubuntu1604x64live/casper/vmlinuz.efi

 - makedirs: true

 - skip_verify: true

ub1604x64desktop_ramdisk:

 file.managed:

 - name: /var/lib/tftpboot/ubuntu1604x64live/initrd.lz

 - user: root

 - group: root

 - mode: 644

 - source: http://127.0.0.1/ubuntu1604x64live/casper/initrd.lz

 - skip_verify: true

● Since the live boot option is the first selection on the PXE boot menu, these states come
next in the salt file

● file.managed ​ pulls the desktop ISO from the Ubuntu website. With sources which do
not ​use a ​salt:// ​ URL, verification steps have been added to ensure the file is
downloaded correctly. This can be a verification using a checksum or (less desirable) the
verification can simply be skipped. In this case we have supplied the sha256 checksum
of the ISO file.

● Next we ensure the folder for mounting the ISO is created using ​file.directory ​.

● Using the state ​mount.mounted ​, the salt ensures that the ISO is mounted using the
correct mount options. These steps replace the ​manual configuration of the live boot ISO
image download and mount​.

● Next, the kernel and ramdisk files need to be copied to tftpboot folder. Since the Ubuntu
16.04x64 Desktop ISO is already mounted, these are pulled from the mount point on the
local apache server and ​not ​from our salt source. In the case where the downloaded ISO

is updated, this allows us to easily grab updated kernel and ramdisk files from the
mounted source, avoiding the requirement to download these files to the local salt folder
each time the ISO changes. Notice here that we choose to skip the verification of the
files since they are sourced from localhost (127.0.0.1). It's also important to note that the
kernel and ramdisk files for Ubuntu desktop are both named differently and are located
within a different path than these same files sourced from their Ubuntu server
counterparts. These two states replace the ​manual steps for downloading the kernel and
ramdisk files​.

Salt: Ubuntu 16.04 Server SaltBase

Setting up ubuntu-16.04-server-amd64 install as a boot option

Grab the ISO from the Ubuntu site

get_ub1604x64server_iso:

 file.managed:

 - name: /media/ubuntu-16.04.2-server-amd64.iso

 - user: root

 - group: root

 - mode: 644

 - source:

http://releases.ubuntu.com/16.04.2/ubuntu-16.04.2-server-amd64.iso

 - source_hash:

sha256=737ae7041212c628de5751d15c3016058b0e833fdc32e7420209b76ca3d0

a535

Mount the ISO using the loop option. Since this is supposed to

be read only media, we don't need to copy files locally.

mount_ub1604x64server_iso:

 file.directory:

 - name: /var/www/html/ubuntu1604x64server

 mount.mounted:

 - name: /var/www/html/ubuntu1604x64server

 - device: /media/ubuntu-16.04.2-server-amd64.iso

 - fstype: iso9660

 - opts:

 - loop

After the ISO is mounted, the kernel and ramdisk need to be

copied from apache to the local TFTP Server to enable this image to

PXE boot

ub1604x64server_kernel:

 file.managed:

 - name: /var/lib/tftpboot/ubuntu1604x64server/linux

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-install

er/amd64/linux

 - makedirs: true

 - skip_verify: true

ub1604x64server_ramdisk:

 file.managed:

 - name: /var/lib/tftpboot/ubuntu1604x64server/initrd.gz

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-install

er/amd64/initrd.gz

 - skip_verify: true

The preseed file specifies all the values necessary in order to

fully automate the OS install

ub1604x64server_preseed:

 file.managed:

 - name: /var/www/html/ub1604x64server.preseed

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/ub1604x64server.preseed

 - template: jinja

● file.managed ​ pulls the 16.04x64 Server ISO from the Ubuntu website and verifies it
using the sha256 hash.

● In much the same way as above, the mount folder is created (using ​file.directory ​)
and the ISO is mounted (using ​mount.mounted ​).

● Also just as above, both the kernel and ramdisk are pulled from the mounted media using
file.managed ​. As noted above, the location and name of the kernel and ramdisk files
differ between Ubuntu Desktop and Ubuntu Server.

● Finally, we pull in the last file. ub1604x64server.preseed. What's different here vs the
other states which use ​file.managed, ​ is the inclusion of the ​template: jinja ​ line.
This means that sections of the file include some ​jinja​, which inserts ​pillar content​ at the
time the file is written to disk. This is more fully detailed in the ​preseed files​ section below.

Salt: Ubuntu 14.04 Server SaltBase

Setting up ubuntu-14.04.5-server-amd64 install as a boot option

Grab the ISO from the Ubuntu site

get_ub1404x64server_iso:

 file.managed:

 - name: /media/ubuntu-14.04.5-server-amd64.iso

 - user: root

 - group: root

 - mode: 644

 - source:

http://releases.ubuntu.com/14.04.5/ubuntu-14.04.5-server-amd64.iso

 - source_hash:

sha256=dde07d37647a1d2d9247e33f14e91acb10445a97578384896b4e1d985f75

4cc1

Mount the ISO using the loop option. Since this is supposed to

be read only media, we don't need to copy files locally.

mount_ub1404x64server_iso:

 file.directory:

 - name: /var/www/html/ubuntu1404x64server

 mount.mounted:

 - name: /var/www/html/ubuntu1404x64server

 - device: /media/ubuntu-14.04.5-server-amd64.iso

 - fstype: iso9660

 - opts:

 - loop

After the ISO is mounted, the kernel and ramdisk need to be

copied from apache to the local TFTP Server to enable this image to

PXE boot

ub1404x64server_kernel:

 file.managed:

 - name: /var/lib/tftpboot/ubuntu1404x64server/linux

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1404x64server/install/netboot/ubuntu-install

er/amd64/linux

 - makedirs: true

 - skip_verify: true

ub1404x64server_ramdisk:

 file.managed:

 - name: /var/lib/tftpboot/ubuntu1404x64server/initrd.gz

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1404x64server/install/netboot/ubuntu-install

er/amd64/initrd.gz

 - skip_verify: true

The preseed file specifies all the values necessary in order to

fully automate the OS intall

ub1404x64server_preseed:

 file.managed:

 - name: /var/www/html/ub1404x64server.preseed

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/ub1404x64server.preseed

 - template: jinja

● file.managed ​ pulls the 14.04x64 Server ISO from the Ubuntu website and verifies it
using the sha256 hash.

● Just as above, the mount folder is created (using ​file.directory ​) and the ISO is
mounted (using ​mount.mounted ​).

● Also just as above, both the kernel and ramdisk are pulled from the mounted media using
file.managed ​. As noted above, the location and name of the kernel and ramdisk files
differ between Ubuntu Desktop and Ubuntu Server.

● Finally, we pull in the last file, ub1404x64server.preseed using ​file.managed ​. This file
also includes jinja templating.

Salt: Memtest Boot

Setting up memtest as a boot option

get_memtest:

 file.managed:

 - name: /var/lib/tftpboot/memtest/memtest

 - user: root

 - group: root

 - mode: 644

 - source:

http://www.memtest.org/download/5.01/memtest86+-5.01.bin

 - makedirs: true

 - skip_verify: true

● For the final menu item, we use ​file.managed ​ to download the bootable image for
memtest (since it's small we skip verification). Also note that we make use of
makedirs: true ​ for creating the containing folder(s) as part of the state.

Salt: NFS Configuration

Configuring NFS for those boot options which require local media

to be mounted

In this case, only the Ubuntu live boot option relies on NFS

nfs_config:

 file.managed:

 - name: /etc/exports

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/exports

 service.running:

 - name: nfs-kernel-server

 - reload: true

 - watch:

 - file: /etc/exports

● Here we use ​file.managed ​ to grab the nfs config file "exports" from our local source.

● We also use the same "watch" technique (as part of ​service.running ​) for restarting
the NFS service as we did for the tftpd-hpa service.

● Although technically only the live boot requires NFS, it is possible that a future menu item
will need to make use of this configuration as well. As such, we have decoupled the
states for nfs from those of live boot.

Salt: PXE Boot Menu & Bootstrap Files

Building the PXE Boot menu and prerequisites

pxe_menu_default:

 file.managed:

 - name: /var/lib/tftpboot/pxelinux.cfg/default

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/default

 - template: jinja

 - makedirs: true

pxe_req1:

 file.managed:

 - name: /var/lib/tftpboot/pxelinux.0

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/pxelinux.0

 - skip_verify: true

pxe_req2:

 file.managed:

 - name: /var/lib/tftpboot/ldlinux.c32

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/ldlinux.c32

 - skip_verify: true

pxe_req3:

 file.managed:

 - name: /var/lib/tftpboot/vesamenu.c32

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-install

er/amd64/boot-screens/vesamenu.c32

 - skip_verify: true

pxe_req4:

 file.managed:

 - name: /var/lib/tftpboot/libcom32.c32

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-install

er/amd64/boot-screens/libcom32.c32

 - skip_verify: true

pxe_req5:

 file.managed:

 - name: /var/lib/tftpboot/libutil.c32

 - user: root

 - group: root

 - mode: 644

 - source:

http://127.0.0.1/ubuntu1604x64server/install/netboot/ubuntu-install

er/amd64/boot-screens/libutil.c32

 - skip_verify: true

● Our first state uses ​file.managed ​ to grab the ​PXE boot menu​ and apply the jinja.

● The remaining states copy the ​PXE Server bootstrap files​ to the correct location within
the tftpboot folder. Since the Ubuntu Server 16.04x64 media is already mounted, we can
simply use this as the source for the files.

Salt: Add the Salt Config files and Formula to PXE

Create the saltbase_install folder and drop in the supporting

files and salt

sbinstall_folder:

 file.directory:

 - name: /var/www/html/saltbase_install

sbinstall_1604list:

 file.managed:

 - name: /var/www/html/saltbase_install/new1604saltstack.list

 - user: root

 - group: root

 - mode: 644

 - source:

salt://pxesaltbase/saltbase_install/new1604saltstack.list

sbinstall_1404list:

 file.managed:

 - name: /var/www/html/saltbase_install/new1404saltstack.list

 - user: root

 - group: root

 - mode: 644

 - source:

salt://pxesaltbase/saltbase_install/new1404saltstack.list

sbinstall_installconf:

 file.managed:

 - name: /var/www/html/saltbase_install/saltbase_install.conf

 - user: root

 - group: root

 - mode: 644

 - source:

salt://pxesaltbase/saltbase_install/saltbase_install.conf

sbinstall_devopsconf:

 file.managed:

 - name: /var/www/html/saltbase_install/devops_standard.conf

 - user: root

 - group: root

 - mode: 644

 - source:

salt://pxesaltbase/saltbase_install/devops_standard.conf

sbinstall_gitfsconf:

 file.managed:

 - name: /var/www/html/saltbase_install/gitfs_remotes.conf

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/saltbase_install/gitfs_remotes.conf

sbinstall_topsls:

 file.managed:

 - name: /var/www/html/saltbase_install/top.sls

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/saltbase_install/top.sls

sbinstall_salt:

 file.managed:

 - name: /var/www/html/saltbase_install/saltbase_install.sls

 - user: root

 - group: root

 - mode: 644

 - source:

salt://pxesaltbase/saltbase_install/saltbase_install.sls

 - template: jinja

● The first state ​sbinstall_folder ​builds the folder for collecting the salt files that will
be applied across both Ubuntu Server installations.

● The next two states (​sbinstall_1604list & sbinstall_1404list ​) are used to
import the .list files. These are used to add the apt source for the updated salt packages
to the SaltBase machines during the application of the preseed file.

● The next two states (​sbinstall_installconf & sbinstall_devopsconf ​) import
the salt-master configurations. A detailed look into these files and how they are applied to
the SaltBase machine can be found in the ​Understanding the difference in salt-master
configuration files​ in Part II.

● The ​sbinstall_gitfsconf ​state imports the gitfs_remotes.conf placeholder file used
for adding remote gitfs sources to a SaltBase machine.

● The ​sbinstall_topsls ​state imports a bare top.sls file used for new SaltBase
machines.

● The ​sbinstall_salt ​state imports the salt formula used to complete the SaltBase
configuration on target hosts. Note that this file is the only one which contains jinja, in this
case for inserting the correct DNS name of the PXE server into the formula for file source
paths.

Salt: Helper Scripts

Drop in the helper scripts. Note that these will be accessible

from the webserver, where they can be copied to the target host by

the saltbase_install.sls salt formula.

saltbase_helper1:

 file.managed:

 - name: /var/www/html/saltbase_install/enable_ssh.sh

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/saltbase_install/enable_ssh.sh

saltbase_helper2:

 file.managed:

 - name: /var/www/html/saltbase_install/newsalthostname.sh

 - user: root

 - group: root

 - mode: 644

 - source:

salt://pxesaltbase/saltbase_install/newsalthostname.sh

saltbase_helper3:

 file.managed:

 - name: /var/www/html/saltbase_install/setupnetwork.sh

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/saltbase_install/setupnetwork.sh

● We use (3) ​file.managed ​ states to copy our helper scripts into the
saltbase_install ​folder of the web server. As noted in the inline comments, it is
important these files are available from the web server so that an auto-deployed SaltBase
machine can grab them as part of the saltbase_install.sls salt formula highstate.

● Note that in ​the manual process​, the helper scripts are downloaded from the web using
URLs. Auto-deploying PXE using SaltStack allows these scripts to be grabbed directly
from the salt folder. This provides additional flexibility by allowing an administrator to
make changes to these scripts and have those changes preserved for all auto-deployed
SaltBase machines without the need to change the salt itself.

Salt: .bashrc

Drop in a new .bashrc file. This contains post install

instructions and fixes the nfsroot hostname limitation in

/var/lib/tftpboot/pxelinux.cfg/default

update_bashrc:

 file.managed:

 - name: /root/.bashrc

 - user: root

 - group: root

 - mode: 644

 - source: salt://pxesaltbase/.bashrc

 - template: jinja

● We use a single ​file.managed ​ state to copy in the last file from our local source and
apply jinja templating.

● In addition to helping fix the limitation of nfs mounting as it pertains to the live boot,
.bashrc ​ is slightly different from the ​manual steps outlined above​. These changes are
tracked in more detail in the ​.bashrc ​ section below.

PXE boot menu (default)
The most basic example of salt with jinja templating can be found in the PXE Boot Menu file,
default​. Comparing this file to our ​manually created PXE boot menu​, we see a single line
change.

Line 10

default
manual

MENU TITLE DevOps Awesome PXE Boot Menu

default
auto-deploy

MENU TITLE {{ pillar.get('PXE_MENU_TITLE') }}

Details In this case we pull the PXE Boot Menu Title into a pillar, allowing for easy
customization..

Preseed files (ub1604x64server.preseed & ub1404x64server.preseed)
The preseed files are ​slightly ​more complex, based on the jinja templating applied as part of the
Salt auto-deploy process. We'll go over the differences on a per line basis to evaluate the
changes.

Line 131-132

ub1604x64server
ub1404x64server
manual

d-i passwd/root-password password r00tme
d-i passwd/root-password-again password r00tme

ub1604x64server
ub1404x64server
auto-deploy

d-i passwd/root-password password {{ pillar.get('DEFAULT_ROOT_PASSWORD') }}
d-i passwd/root-password-again password {{ pillar.get('DEFAULT_ROOT_PASSWORD')
}}

Details This is an easy and simple replacement where a default password is
replaced with a value stored in the pillar. Salt inserts the value from the
pillar when the preseed file is written to the filesystem. Note this change
is valid for both ub1604x64server and ub1404x64server preseed files.

Line 490

ub1604x64server
manual

in-target wget -P /etc/apt/sources.list.d/
http://pxe.bobbarker.com/saltbase_install/new1604saltstack.list; \

ub1604x64server
auto-deploy

in-target wget -P /etc/apt/sources.list.d/ http://{{ pillar.get('PXE_DNS_NAME')
}}/saltbase_install/new1604saltstack.list; \

Details Again, this is an easy and simple replacement where the DNS name is
pulled from the pillar and applied to the preseed file. This line downloads
the updated apt source for SaltStack directly from the PXE server.

Line 490

ub1404x64server
manual

in-target wget -P /etc/apt/sources.list.d/
http://pxe.bobbarker.com/saltbase_install/new1404saltstack.list; \

ub1404x64server
auto-deploy

in-target wget -P /etc/apt/sources.list.d/ http://{{ pillar.get('PXE_DNS_NAME')
}}/saltbase_install/new1404saltstack.list; \

Details Exactly the same as the lines above, but replace 16.04 with 14.04.

Line 495- 497

ub1604x64server
ub1404x64server
manual

in-target wget -P /etc/salt/master.d/
http://pxe.bobbarker.com/saltbase_install/saltbase_install.conf; \
in-target wget -P /srv/salt/ http://pxe.bobbarker.com/saltbase_install/top.sls; \
in-target wget -P /srv/salt/ http://pxe.bobbarker.com/saltbase_install/saltbase_install.sls; \

ub1604x64server
ub1404x64server
auto-deploy

in-target wget -P /etc/salt/master.d/ http://{{ pillar.get('PXE_DNS_NAME')
}}/saltbase_install/saltbase_install.conf; \
in-target wget -P /srv/salt/ http://{{ pillar.get('PXE_DNS_NAME') }}/saltbase_install/top.sls; \
in-target wget -P /srv/salt/ http://{{ pillar.get('PXE_DNS_NAME')
}}/saltbase_install/saltbase_install.sls; \

Details Again, we variabilize the DNS name for the PXE Server, in this case to
allow for downloading of the salt files and the salt install config directly
from the PXE server itself. Note this change is valid for both
ub1604x64server and ub1404x64server preseed files.

Side Note:​ As detailed above in the manual process, the simple way to set the root
password uses plaintext input, but a more secure way to accomplish this is by pre-hashing the
password and using the root-password-crypted command. First, get the hash of the
password using mkpasswd, drop the value into the pillar, then make the following changes to
the root-password-crypted command. (mkpasswd requires the whois package be installed)

mkpasswd -H md5 "yourpassword"

Line 134

Original #d-i passwd/root-password-crypted password [crypt(3) hash]

ub1604x64server d-i passwd/root-password-crypted password {{
pillar.get('CRYPTED_ROOT_PASSWORD') }}

Details Uncommented to automate the setting of the root password using the
pre-hashed value stored in the pillar..

The jinja templating in the salt version of the preseed files adds a small amount of complexity
vs. the manual process. From an overall scope, this is balanced by the simple customizability
offered through the use of the ​pillar data​.

.bashrc
Although it seems like this would be a simpler file (with only a single line of jinja) .bashrc is the
first real divergence from the manual process that we've outlined above. The ​manual process​ is
still represented by the code to fix nfs, but the remaining lines are meant to notify the user of the
steps which must be performed before the PXE server configuration is complete. These steps
were performed manually above as part of the ​PXE prerequisites​ and ​External prerequisites
sections, but cannot be automated and are therefore called out using a block of reminders
echoed to the console.

Line 111-119

ub1604x64server
ub1404x64server
manual

Lines do not exist

ub1604x64server
ub1404x64server
auto-deploy

Add the following reminders for the configuration of the PXE server after an automated
salt build
echo ""
echo "********************"
echo "On initial boot, you should perform the following to complete the PXE Server
configuration:"
echo " - Assign a static IP to the PXE server using the /root/setupnetwork.sh script"
echo " - Change the hostname using the /root/newsalthostname.sh script"
echo " - Add a {{ pillar.get('PXE_DNS_NAME') }} DNS record"
echo "********************"
echo ""

Details These lines are added to remind the user (after the imaging of the PXE
server is complete) of the remaining tasks which must be completed
before the PXE server will perform as expected. This pulls the same DNS
name from the pillar as is used above in other files with jinja templating..

salt formula (saltbase_install.sls)
In much the same way as the preseed files, the salt formula includes jinja templating as well

Line 8, 9, 10

ub1604x64server
ub1404x64server
manual

wget -P /root/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/en
able_ssh.sh
wget -P /root/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/set
upnetwork.sh
wget -P /root/
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/ne
wsalthostname.sh

ub1604x64server
ub1404x64server
auto-deploy

wget -P /root/ http://{{ pillar.get('PXE_DNS_NAME') }}/enable_ssh.sh
wget -P /root/ http://{{ pillar.get('PXE_DNS_NAME') }}/setupnetwork.sh
wget -P /root/ http://{{ pillar.get('PXE_DNS_NAME') }}/newsalthostname.sh

Details A simple replacement of the source URL for the helper scripts. Since we
know that these scripts will be served from the PXE server, we can use
the DNS name in the copy process. Note this change is valid for both
ub1604x64server and ub1404x64server SaltBase machines..

Static Files
The content of the remaining files do not change between the manual and automated PXE build
processes:

exports new1404saltstack.list saltbase_install.conf setupnetwork.sh

tftpd-hpa new1604saltstack.list devops_standard.conf enable_ssh.sh

top.sls newsalthostname.sh gitfs_remotes.conf

Pillar Customization
In this section we will step through the pillar and see how easy it is to customize. Note that by
convention, the pillar itself will be stored as an example file in the repo. In this case we've
named the pillar ​pxesaltbase.sls.pillarexample ​.

PXESaltBase Pillar Contents

PXE_MENU_TITLE: 'DevOps Awesome PXE Boot Menu'

PXE_DNS_NAME: 'pxe.bobbarker.com'

DEFAULT_ROOT_PASSWORD: 'INeedToBeChanged'

CRYPTED_ROOT_PASSWORD: '1ROnGTxWk$yaVNw1c07.K2y8VJfmFQF0'

● PXE_MENU_TITLE ​ is only used once in ​default​, the PXE Boot Menu file. This can be left
as is or customized to the user's preference. Note the use of single quotes here: ​the title
should not include anything with single quotes as this will break the markup.​ For
example, ​'Bob's Menu' ​ would not work.

● PXE_DNS_NAME ​ is used in the preseed files, .bashrc, and the saltbase_install.sls salt
formula. This must be changed to the DNS name chosen for the PXESaltBase server.

● DEFAULT_ROOT_PASSWORD ​ is used only once, in the preseed files. This can be left as
is or customized to the user's preference. ​Note that a password under 8 characters
will elicit a warning from the Ubuntu installer during all install processes to PXE
clients.​ It's a good practice to keep this password at 8 characters or above.

● CRYPTED_ROOT_PASSWORD ​ is used only optionally in the preseed files (if the more
secure method of setting the root password is used). This can be left as is or customized
to the user's preference. This is the hash of the default password.

How to use the pillar
Salt can be accessed from any number of places depending on how a SaltBase machine is
configured, basically falling into two categories: a) ​local ​salt in /srv/salt and b) ​remote ​salt in
remote gitfs repos. Interestingly, the pillar should always be ​local ​since it contains values that
are either sensitive or specific to the deployed machines. Technically a pillar ​could ​reside within
a repo (with edits being committed) but this is not considered good practice. The good news
here is that the pillar will work regardless of where the salt resides. Since formula names are
unique across all salt sources, the pillar will match one (and only one) formula. To use the pillar
simply customize the content of the file before running a salt highstate. See the ​Set up the Pillar
section below for more detail.

Build Walkthrough
Now that we have looked at both the salt and pillar, it is time to set up the process for building
the PXESaltBase machine.

Deploy a new VM
If you didn't skip ahead, you'll know you have two options here:

● Deploy a SaltBase machine from an ​.ova
● Deploy a SaltBase machine from PXE

Set up the Salt
After you have logged into the machine, you will need to set the remote gitfs repository for
pxesaltbase on the host.

1. Open our gitfs_remotes.conf file for editing

nano /etc/salt/master.d/gitfs_remotes.conf

2. Remove the # in front of gitfs_remotes:, add the following content, and ​save​ the file.
(new content in ​light green​)

gitfs_remotes:

- https://gitsource.bobbarker.com/happy.git:

- user: for protected sources

- password: for protected sources

- root: salt

 - https://github.com/love2scoot/pxesaltbase-formula.git

3. Edit the top file to include the new formula

nano /srv/salt/top.sls

4. Add the following content to top.sls and ​save​ the file. ​(new content in ​light green​)

base:

 '*':

 - pxesaltbase

​ - saltbase_install

5. Restart the Salt master in order to pick up these changes:

service salt-master restart

6. Update the local cache of the remote sources (should return ​TRUE​):

salt-run fileserver.update

Set up the Pillar
1. Copy the pillar into the correct local folder

wget -P /srv/pillar

https://raw.githubusercontent.com/love2scoot/pxesaltbase-for

mula/master/pxesaltbase.sls.pillarexample

2. Rename the pillar

mv /srv/pillar/pxesaltbase.sls.pillarexample

/srv/pillar/pxesaltbase.sls

3. Open the pillar for editing, customize it (watch for quoting), and save the file.

nano /srv/pillar/pxesaltbase.sls

4. Copy the salt top file to the pillar top file

cp /srv/salt/top.sls /srv/pillar/top.sls

Deployment and Testing
Everything should be ready to go! Let's...

Make it so!
1. Run a highstate to deploy the PXESaltBase to the machine, but redirect the output to a

file for inspection.

salt '*' state.highstate > ~/pxesaltbase.log

Side Note:​ Due to the fact that the salt for the PXE Server downloads (3) ISO files and (1)
boot image, the highstate will require several minutes to complete. This timing can be highly
variable based on internet connection throughput as well as load on the servers hosting the
ISO files. A good rule of thumb is to check back after approximately 15 minutes.

Stepping through the Salt-Master report
Below is the full report echoed by the Salt-Master after the highstate command was run on a
SaltBase machine set to deploy the pxesaltbase formula. We'll step through this report in
sections to help clarify what to expect and call attention to some interesting details.

pxesaltbasetest:

 ID: pxe_packages

 Function: pkg.installed

 Result: True

 Comment: 3 targeted packages were installed/updated.

 Started: 16:07:50.855672

 Duration: 18976.478 ms

 Changes:

 apache2:

 new:

 2.4.18-2ubuntu3.4

 old:

 apache2-api-20120211:

 new:

 1

 old:

 apache2-bin:

 new:

 2.4.18-2ubuntu3.4

 old:

 apache2-data:

 new:

 2.4.18-2ubuntu3.4

 old:

 apache2-utils:

 new:

 2.4.18-2ubuntu3.4

 old:

 httpd:

 new:

 1

 old:

 httpd-cgi:

 new:

 1

 old:

 keyutils:

 new:

 1.5.9-8ubuntu1

 old:

 knfs:

 new:

 1

 old:

 libapr1:

 new:

 1.5.2-3

 old:

 libaprutil1:

 new:

 1.5.4-1build1

 old:

 libaprutil1-dbd-sqlite3:

 new:

 1.5.4-1build1

 old:

 libaprutil1-ldap:

 new:

 1.5.4-1build1

 old:

 libevent-2.0-5:

 new:

 2.0.21-stable-2ubuntu0.16.04.1

 old:

 liblua5.1-0:

 new:

 5.1.5-8ubuntu1

 old:

 libnfsidmap2:

 new:

 0.25-5

 old:

 libtirpc1:

 new:

 0.2.5-1

 old:

 nfs-client:

 new:

 1

 old:

 nfs-common:

 new:

 1:1.2.8-9ubuntu12.1

 old:

 nfs-kernel-server:

 new:

 1:1.2.8-9ubuntu12.1

 old:

 nfs-server:

 new:

 1

 old:

 portmap:

 new:

 1

 old:

 rpcbind:

 new:

 0.2.3-0.2

 old:

 ssl-cert:

 new:

 1.0.37

 old:

 tftp-server:

 new:

 1

 old:

 tftpd-hpa:

 new:

 5.2+20150808-1ubuntu1.16.04.1

 old:

The significant content above is the result of a single state, that of the ​package install for the
PXE server​. Although only (3) packages are directed to be installed, Salt uses the system
package manager for installation, which will properly install all dependencies as well (thus the
install / update of 26 packages). Also note the time of execution, which is ~19 seconds.

 ID: tftpd_config

 Function: file.managed

 Name: /etc/default/tftpd-hpa

 Result: True

 Comment: File /etc/default/tftpd-hpa updated

 Started: 16:08:09.838375

 Duration: 119.653 ms

 Changes:

 diff:

 +++

 @@ -2,5 +2,7 @@

 TFTP_USERNAME="tftp"

 TFTP_DIRECTORY="/var/lib/tftpboot"

 -TFTP_ADDRESS=":69"

 +TFTP_ADDRESS="[::]:69"

 TFTP_OPTIONS="--secure"

 +RUN_DAEMON="yes"

 +OPTIONS="-l -s /var/lib/tftpboot"

 ID: tftpd_config

 Function: service.running

 Name: tftpd-hpa

 Result: True

 Comment: Running scope as unit

run-rd9003b6351824924a958563791f54032.scope.

 Failed to reload tftpd-hpa.service: Job type reload is not

applicable for unit tftpd-hpa.service.

 See system logs and 'systemctl status tftpd-hpa.service' for

details.

 Started: 16:08:10.465685

 Duration: 60.917 ms

 Changes:

The states above are those which correspond to the ​configuration of the TFTP server​. In the
first state results, we can see the diff of the salt managed file vs. the file on the disk. This
clocks in at ~120ms.

The second set is the attempt by Salt to restart the tftpd-hpa service (since the tftpd-hpa file
changed). It is unclear why this does not work, since these steps complete without incident in
the ​manual TFTP process​. This does not report an error, but simply does not complete since
the specified option does not work for this service. This state was quick at ~61ms.

 ID: get_ub1604x64desktop_iso

 Function: file.managed

 Name: /media/ubuntu-16.04.2-desktop-amd64.iso

 Result: True

 Comment: File /media/ubuntu-16.04.2-desktop-amd64.iso updated

 Started: 16:08:10.526839

 Duration: 904962.673 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: mount_ub1604x64desktop_iso

 Function: file.directory

 Name: /var/www/html/ubuntu1604x64live

 Result: True

 Comment: Directory /var/www/html/ubuntu1604x64live updated

 Started: 16:23:15.490023

 Duration: 6.253 ms

 Changes:

 /var/www/html/ubuntu1604x64live:

 New Dir

 ID: mount_ub1604x64desktop_iso

 Function: mount.mounted

 Name: /var/www/html/ubuntu1604x64live

 Result: True

 Comment: Target was successfully mounted. Added new entry to the fstab.

 Started: 16:23:15.536178

 Duration: 602.536 ms

 Changes:

 mount:

 True

 persist:

 new

 ID: ub1604x64desktop_kernel

 Function: file.managed

 Name: /var/lib/tftpboot/ubuntu1604x64live/vmlinuz.efi

 Result: True

 Comment: File /var/lib/tftpboot/ubuntu1604x64live/vmlinuz.efi updated

 Started: 16:23:16.138977

 Duration: 173.077 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: ub1604x64desktop_ramdisk

 Function: file.managed

 Name: /var/lib/tftpboot/ubuntu1604x64live/initrd.lz

 Result: True

 Comment: File /var/lib/tftpboot/ubuntu1604x64live/initrd.lz updated

 Started: 16:23:16.312228

 Duration: 215.207 ms

 Changes:

 diff:

 New file

 mode:

 0644

This section consists of those states corresponding to the ​Ubuntu 16.04x64 Desktop Live
Boot​.

Our first state is the downloading of the ISO directly from Ubuntu, which is quite time intensive
at approximately 905 seconds.

The remaining states create the folder, mount the ISO, and copy two files from the mounted
ISO using apache. Cumulatively these states require less than 1 second.

 ID: get_ub1604x64server_iso

 Function: file.managed

 Name: /media/ubuntu-16.04.2-server-amd64.iso

 Result: True

 Comment: File /media/ubuntu-16.04.2-server-amd64.iso updated

 Started: 16:23:16.527598

 Duration: 391890.856 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: mount_ub1604x64server_iso

 Function: file.directory

 Name: /var/www/html/ubuntu1604x64server

 Result: True

 Comment: Directory /var/www/html/ubuntu1604x64server updated

 Started: 16:29:48.434978

 Duration: 8.273 ms

 Changes:

 /var/www/html/ubuntu1604x64server:

 New Dir

 ID: mount_ub1604x64server_iso

 Function: mount.mounted

 Name: /var/www/html/ubuntu1604x64server

 Result: True

 Comment: Target was successfully mounted. Added new entry to the fstab.

 Started: 16:29:48.443451

 Duration: 402.61 ms

 Changes:

 mount:

 True

 persist:

 new

 ID: ub1604x64server_kernel

 Function: file.managed

 Name: /var/lib/tftpboot/ubuntu1604x64server/linux

 Result: True

 Comment: File /var/lib/tftpboot/ubuntu1604x64server/linux updated

 Started: 16:29:48.846324

 Duration: 220.305 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: ub1604x64server_ramdisk

 Function: file.managed

 Name: /var/lib/tftpboot/ubuntu1604x64server/initrd.gz

 Result: True

 Comment: File /var/lib/tftpboot/ubuntu1604x64server/initrd.gz updated

 Started: 16:29:49.066787

 Duration: 927.321 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: ub1604x64server_preseed

 Function: file.managed

 Name: /var/www/html/ub1604x64server.preseed

 Result: True

 Comment: File /var/www/html/ub1604x64server.preseed updated

 Started: 16:29:49.994289

 Duration: 218.122 ms

 Changes:

 diff:

 New file

 mode:

 0644

This section consists of those states corresponding to the ​Ubuntu 16.04x64 Server SaltBase
install process​.

Just as above, the first state downloads the ISO directly from Ubuntu, requiring ~392 seconds
to complete.The remaining states are responsible for creating the new folder, mounting the
ISO, copying the bootstrap files, and the preseed file over http using apache. Cumulatively
these states required ~1.78 seconds to complete.

 ID: get_ub1404x64server_iso

 Function: file.managed

 Name: /media/ubuntu-14.04.5-server-amd64.iso

 Result: True

 Comment: File /media/ubuntu-14.04.5-server-amd64.iso updated

 Started: 16:29:50.212542

 Duration: 264174.095 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: mount_ub1404x64server_iso

 Function: file.directory

 Name: /var/www/html/ubuntu1404x64server

 Result: True

 Comment: Directory /var/www/html/ubuntu1404x64server updated

 Started: 16:34:14.386926

 Duration: 18.492 ms

 Changes:

 /var/www/html/ubuntu1404x64server:

 New Dir

 ID: mount_ub1404x64server_iso

 Function: mount.mounted

 Name: /var/www/html/ubuntu1404x64server

 Result: True

 Comment: Target was successfully mounted. Added new entry to the fstab.

 Started: 16:34:14.405604

 Duration: 457.835 ms

 Changes:

 mount:

 True

 persist:

 new

 ID: ub1404x64server_kernel

 Function: file.managed

 Name: /var/lib/tftpboot/ubuntu1404x64server/linux

 Result: True

 Comment: File /var/lib/tftpboot/ubuntu1404x64server/linux updated

 Started: 16:34:14.863701

 Duration: 245.897 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: ub1404x64server_ramdisk

 Function: file.managed

 Name: /var/lib/tftpboot/ubuntu1404x64server/initrd.gz

 Result: True

 Comment: File /var/lib/tftpboot/ubuntu1404x64server/initrd.gz updated

 Started: 16:34:15.109839

 Duration: 911.583 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: ub1404x64server_preseed

 Function: file.managed

 Name: /var/www/html/ub1404x64server.preseed

 Result: True

 Comment: File /var/www/html/ub1404x64server.preseed updated

 Started: 16:34:16.021608

 Duration: 120.391 ms

 Changes:

 diff:

 New file

 mode:

 0644

This section consists of those states corresponding to the ​Ubuntu 14.04x64 Server SaltBase
install process​.

Just as above, the first state downloads the ISO directly from Ubuntu. Despite the 1404x64
server ISO being approximately the same size as the 16.04x64 ISO, this state clocks in at
~264 seconds (vs ~392 above). The remaining states are responsible for creating the new
folder, mounting the ISO, copying the bootstrap files, and the preseed file over http using
apache. Cumulatively these states required ~1.75 second to complete.

 ID: get_memtest

 Function: file.managed

 Name: /var/lib/tftpboot/memtest/memtest

 Result: True

 Comment: File /var/lib/tftpboot/memtest/memtest updated

 Started: 16:34:16.142191

 Duration: 980.782 ms

 Changes:

 diff:

 New file

 mode:

 0644

This single state handles the ​download of memtest​ directly to the TFTP share, making it
available as a boot option. This was quite fast at under 1 second to complete.

 ID: nfs_config

 Function: file.managed

 Name: /etc/exports

 Result: True

 Comment: File /etc/exports updated

 Started: 16:34:17.123184

 Duration: 49.944 ms

 Changes:

 diff:

 +++

 @@ -8,3 +8,4 @@

 # /srv/nfs4

gss/krb5i(rw,sync,fsid=0,crossmnt,no_subtree_check)

 # /srv/nfs4/homes gss/krb5i(rw,sync,no_subtree_check)

 #

 +/var/www/html/ubuntu1604x64live/ *

(ro,sync,no_wdelay,insecure_locks,no_root_squash,insecure)

 ID: nfs_config

 Function: service.running

 Name: nfs-kernel-server

 Result: True

 Comment: Service reloaded

 Started: 16:34:17.437769

 Duration: 152.644 ms

 Changes:

 nfs-kernel-server:

 True

These two states manage the ​configuration of NFS​. In the first state we see the diff between
the salt managed file and the local file while the second reloads the service. These changes
are applied quickly with a combined time of ~203ms.

 ID: pxe_menu_default

 Function: file.managed

 Name: /var/lib/tftpboot/pxelinux.cfg/default

 Result: True

 Comment: File /var/lib/tftpboot/pxelinux.cfg/default updated

 Started: 16:34:17.590770

 Duration: 51.563 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: pxe_req1

 Function: file.managed

 Name: /var/lib/tftpboot/pxelinux.0

 Result: True

 Comment: File /var/lib/tftpboot/pxelinux.0 updated

 Started: 16:34:17.642495

 Duration: 56.29 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: pxe_req2

 Function: file.managed

 Name: /var/lib/tftpboot/ldlinux.c32

 Result: True

 Comment: File /var/lib/tftpboot/ldlinux.c32 updated

 Started: 16:34:17.698969

 Duration: 25.695 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: pxe_req3

 Function: file.managed

 Name: /var/lib/tftpboot/vesamenu.c32

 Result: True

 Comment: File /var/lib/tftpboot/vesamenu.c32 updated

 Started: 16:34:17.724846

 Duration: 23.913 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: pxe_req4

 Function: file.managed

 Name: /var/lib/tftpboot/libcom32.c32

 Result: True

 Comment: File /var/lib/tftpboot/libcom32.c32 updated

 Started: 16:34:17.748951

 Duration: 30.626 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: pxe_req5

 Function: file.managed

 Name: /var/lib/tftpboot/libutil.c32

 Result: True

 Comment: File /var/lib/tftpboot/libutil.c32 updated

 Started: 16:34:17.779765

 Duration: 18.129 ms

 Changes:

 diff:

 New file

 mode:

 0644

These states simply copy new files to the PXESaltBase machine, namely the ​PXE Boot Menu
and the Bootstrap files​. These operations require minimal resources, finishing up all (6)
states in ~205ms.

 ID: sbinstall_folder

 Function: file.directory

 Name: /var/www/html/saltbase_install

 Result: True

 Comment: Directory /var/www/html/saltbase_install updated

 Started: 16:34:17.798174

 Duration: 1.511 ms

 Changes:

 /var/www/html/saltbase_install:

 New Dir

 ID: sbinstall_1604list

 Function: file.managed

 Name: /var/www/html/saltbase_install/new1604saltstack.list

 Result: True

 Comment: File /var/www/html/saltbase_install/new1604saltstack.list

updated

 Started: 16:34:17.799916

 Duration: 46.184 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: sbinstall_1404list

 Function: file.managed

 Name: /var/www/html/saltbase_install/new1404saltstack.list

 Result: True

 Comment: File /var/www/html/saltbase_install/new1404saltstack.list

updated

 Started: 16:34:17.846255

 Duration: 33.522 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: sbinstall_installconf

 Function: file.managed

 Name: /var/www/html/saltbase_install/saltbase_install.conf

 Result: True

 Comment: File /var/www/html/saltbase_install/saltbase_install.conf

updated

 Started: 16:34:17.880048

 Duration: 36.227 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: sbinstall_devopsconf

 Function: file.managed

 Name: /var/www/html/saltbase_install/devops_standard.conf

 Result: True

 Comment: File /var/www/html/saltbase_install/devops_standard.conf updated

 Started: 16:34:17.916550

 Duration: 30.48 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: sbinstall_gitfsconf

 Function: file.managed

 Name: /var/www/html/saltbase_install/gitfs_remotes.conf

 Result: True

 Comment: File /var/www/html/saltbase_install/gitfs_remotes.conf updated

 Started: 16:34:17.947184

 Duration: 31.504 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: sbinstall_topsls

 Function: file.managed

 Name: /var/www/html/saltbase_install/top.sls

 Result: True

 Comment: File /var/www/html/saltbase_install/top.sls updated

 Started: 16:34:17.978872

 Duration: 35.276 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: sbinstall_salt

 Function: file.managed

 Name: /var/www/html/saltbase_install/saltbase_install.sls

 Result: True

 Comment: File /var/www/html/saltbase_install/saltbase_install.sls updated

 Started: 16:34:18.014331

 Duration: 36.796 ms

 Changes:

 diff:

 New file

 mode:

 0644

These states copy the ​files required for the functionality of salt​ on the SaltBase machine.
These files are copied to the PXESaltbase server where they will be used as source files
during SaltBase builds from the PXE server. These states completed in ~250ms.

 ID: saltbase_helper1

 Function: file.managed

 Name: /var/www/html/saltbase_install/enable_ssh.sh

 Result: True

 Comment: File /var/www/html/saltbase_install/enable_ssh.sh updated

 Started: 16:34:18.051313

 Duration: 30.328 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: saltbase_helper2

 Function: file.managed

 Name: /var/www/html/saltbase_install/newsalthostname.sh

 Result: True

 Comment: File /var/www/html/saltbase_install/newsalthostname.sh updated

 Started: 16:34:18.081815

 Duration: 37.449 ms

 Changes:

 diff:

 New file

 mode:

 0644

 ID: saltbase_helper3

 Function: file.managed

 Name: /var/www/html/saltbase_install/setupnetwork.sh

 Result: True

 Comment: File /var/www/html/saltbase_install/setupnetwork.sh updated

 Started: 16:34:18.119460

 Duration: 43.99 ms

 Changes:

 diff:

 New file

 mode:

 0644

Just as above, these states simply copy the ​helper scripts​ to the PXESaltbase machine, and
do so in ~112ms.

 ID: update_bashrc

 Function: file.managed

 Name: /root/.bashrc

 Result: True

 Comment: File /root/.bashrc updated

 Started: 16:34:18.163726

 Duration: 70.788 ms

 Changes:

 diff:

 +++

 @@ -97,6 +97,23 @@

 #if [-f /etc/bash_completion] && ! shopt -oq posix; then

 # . /etc/bash_completion

 #fi

 -# START salt blockreplace

 -# Initial config completed

 -# END salt blockreplace

 +

 +# The following commands fix the nfsroot call in defaults.

Busybox will not resolve the hostname so we are restricted to using the IP

only.

 +if (grep eth0 /etc/network/interfaces)

 +then

 + ethname="eth0" #Found eth0

 +else

 + ethname=`ifconfig | grep -w -m 1 ens... | awk '{print

$1;}'` #Derived Ethernet interface name

 +fi

 +localpxeip=`/sbin/ifconfig $ethname | grep 'inet addr:' |

cut -d: -f2 | awk '{ print $1 }'`

 +sed -i "s|nfsroot.*:|nfsroot=$localpxeip:|g"

/var/lib/tftpboot/pxelinux.cfg/default

 +

 +# Add the following reminders for the configuration of the

PXE server after an automated salt build

 +echo ""

 +echo "********************"

 +echo "On initial boot, you should perform the following to

complete the PXE Server configuration:"

 +echo " - Assign a static IP to the PXE server using the

/root/setupnetwork.sh script"

 +echo " - Change the hostname using the

/root/newsalthostname.sh script"

 +echo " - Add a pxe.nuvation.com DNS record"

 +echo "********************"

 +echo ""

The final state, ​updating the .bashrc file​, shows the full diff between the salt managed file and
that of the local file. This is again a quick process, completing in ~71ms.

Summary for pxesaltbasetest

Succeeded: 41 (changed=40)

Failed: 0

Total states run: 41

Total run time: 1586.536 s

There are some interesting takeaways from this summary:

● There are no failures, they would have been easily spotted as ​red​ text.

● States which precipitate some change are called out next to the succeeded total, this
is helpful when applying a highstate multiple times as it will be clear which states in the
salt make changes at each iteration.

● This salt formula required quite a long time to complete at more than 26 minutes!
However, if the total time required to download the ISO files (~1561 seconds) is
subtracted from the whole, the entire configuration of the PXESaltBase server requires
only ​25 seconds​, of which almost ​19 seconds​ are spent on package installations and
updates. This illustrates not only the incredible performance of salt, but that the
execution time can be dramatically cut by locally caching the ISO files and updating
the salt accordingly.

Enable the PXESaltBase machine
OK, it's deployed, now what? Well, upon reboot (and login) the following message will be
displayed:

On initial boot, you should perform the following to complete the PXE

Server configuration:

 - Assign a static IP to the PXE server using the

/root/setupnetwork.sh script"

 - Change the hostname using the /root/newsalthostname.sh script"

 - Add a pxe.bobbarker.com DNS record"

These lines were added to the end of .bashrc to remind the user of the remaining prerequisites
for getting the PXESaltBase machine enabled. Once these quick points are completed, the
PXESaltBase Server should be able to auto-deploy new SaltBase machines within the target
infrastructure.

Finish Line / The Real Start
Completing the build of our Ubuntu + SaltStack + gitfs + PXE infrastructure is really just the
beginning. This infrastructure opens up new avenues for rapid development and repeatable
configuration. It allows for simplified (re)use of vetted code, and easy deployment to templates,
hypervisors, and bare metal alike. Removing the complexity of OS configuration while
streamlining the development process unleashes both Developers and IT to focus on bigger
challenges.

Looking Forward
With this infrastructure built and fully automated, we can look toward expanding this work by
extending options on the PXE server itself as well as looking at complementary systems.

Example: Build a Complementary apt-cache
One of the things that can have a direct impact on SaltBase machines (or all Linux machines for
that matter) is the inclusion of an apt-cache server. An apt-cache server acts as a local network
cache of updated Linux packages which can be provided to clients at local network speeds. In
this section we will build an apt-cache server to complement the PXE server, and in the process
provide an example of a SaltBase machine deployment using simple formulas to rapidly expand
an infrastructure. This example will skip the manual configuration steps and jump straight into
development using salt.

Apt-cache Deployment
The PXE server and SaltBase clients will benefit from the apt-cache, but consideration should
be made on where to deploy this server. On one hand, this server can be deployed to a fresh
SaltBase machine and stand on its own. On the other, the apt-cache server could be added
directly to the existing PXE server. In either case, the configuration and implementation using a
salt formula will be the same. If this is to be a standalone server, a new SaltBase machine
should be deployed before continuing. If the apt-cache is to be added to the existing PXE
server, this machine should be attached to via ssh (or console) before continuing.

Apt-cache Overview
Building an apt-cache is actually quite simple and can be broken down into the following major
tasks:

● Install prerequisites (Apache)
● Install apt-cacher package
● Add a configuration file
● Update DNS records
● Point hosts to apt-cache server
● Extra Credit: Configure apache and link to apt-cache status page

Let's take these one at time and develop within the context of a salt formula. First, we'll need to
setup our salt environment for a new "myaptcache" salt formula and enable the formula.

mkdir /srv/salt/myaptcache

touch /srv/salt/myaptcache/init.sls

echo " - myaptcache" >> /srv/salt/top.sls

Install prerequisites (Apache)
This is can be easily implemented within a single state. Add this state to ​init.sls ​.

aptcache_prereq:

 pkg.installed:

 - refresh: True

 - pkgs:

 - apache2

Install apt-cacher package
In much the same way as the prerequisite, we can install the apt-cacher package. Note that the
apt-cache service should be changed to run at boot time. Add this state to ​init.sls ​.

Install the apt-cacher service and ensure it starts at boot

aptcache_install:

 pkg.installed:

 - refresh: True

 - pkgs:

 - apt-cacher

 service.running:

 - name: apt-cacher

 - enable: True

Add a configuration file
Next we'll want to build a configuration file and install it to the correct location.

 Build the apt-cache configuration file
We'll want to build a basic configuration file for the apt-cache server which includes all fields we
need and some we may want to use in the future. Also note that a field called "​admin_email ​"
exists in the file. We'll want to specify this field from the pillar (via jinja) to ensure this
information can be easily configured or updated in the future.

The following content can be saved as ​/srv/salt/myatpcache/myaptcache.conf ​.

GENERAL ###

cache_dir=/var/cache/apt-cacher

logdir=/var/log/apt-cacher

admin_email={{ pillar.get('ADMIN_EMAIL') }}

daemon_port=3142

group=www-data

user=www-data

offline_mode=0

UPSTREAM PROXY ###

limit=0

ACCESS and SECURITY ###

allowed_hosts=*

denied_hosts=

allowed_hosts_6=fec0::/16

denied_hosts_6=

supported_archs = i386, amd64

HOUSEKEEPING ###

generate_reports=1

clean_cache=1

INTERNALS ###

debug=0

EXTRA ###

expire_hours=0

use_proxy=0

use_proxy_auth=0

Install the apt-cache server config file
Next we'll build some salt to install this config file into place. This state should manage the file
using jinja templating and should restart the apt-cacher service if this config file changes when
the state is applied. Note that best practices are to drop this file into
/etc/apt-cacher/conf.d/ ​instead of directly manipulating the global apt-cache config file
(​/etc/apt-cacher/apt-cacher.conf ​). Add this state to ​init.sls ​.

Drop in the apt-cacher config file

aptcache_config:

 file.managed:

 - name: /etc/apt-cacher/conf.d/myaptcache.conf

 - user: root

 - group: root

 - mode: 644

 - source: salt://aptcache/myaptcache.conf

 - template: jinja

 service.running:

 - watch:

 - file: /etc/apt-cacher/conf.d/myaptcache.conf

 - name: apt-cacher

Enable the pillar
The pillar needs to be created and have the content added to it for insertion into the config file
above.

1. Edit the pillar

nano /srv/pillar/myaptcache.sls

2. Add the variable value to the pillar and save the pillar before exiting nano
.

ADMIN_EMAIL: 'bob@bobbarker.com'

3. Enable the pillar (the top.sls for salt already has the call to myaptcache)

cp /srv/salt/top.sls /srv/pillar/top.sls

Run a highstate to build the apt-cache server
1. Run the highstate

salt '*' state.highstate > ~/aptcacheinstall.log

Update DNS Records
Technically, the configuration file and the salt states above are sufficient to get the apt-cache
running. The easiest way to ensure that hosts can access this server is to add a DNS record
(regardless of whether the apt-cache was deployed independently or directly to the PXE server).

1. Login to your local DNS server
2. Add a record for the aptcache server. e.g.: ​aptcache.bobbarker.com

Point hosts to apt-cache server
Finally, we'll need to point hosts to the new apt-cache server.

Manually point hosts to aptcache
For hosts which already have a fully configured OS, they can be pointed to the apt-cache server
manually. Replace "​aptcache.bobbarker.com" ​ with the DNS name entered above.

echo 'Acquire::http::Proxy "http://aptcache.bobbarker.com:3142";' >

/etc/apt/apt.conf.d/01proxy

Add apt-cache server via salt
Enabling the apt-cache can also be completed with a small salt formula on salt enabled hosts..
Create the following files, add an entry to /srv/salt/top/sls, and run a highstate to complete the
change. Replace "​aptcache.bobbarker.com" ​ with the DNS name entered above.

/srv/salt/enableaptcache/01proxy /srv/salt/enableaptcache/init.sls

Acquire::http::Proxy

"http://aptcache.bobbarker.com:3142";

Enable the local apt cache

local_apt_cache:

 file.managed:

 - name:

/etc/apt/apt.conf.d/01proxy

 - user: root

 - group: root

 - mode: 644

 - source:

salt://enableaptcache/01proxy

Add apt-cache server to SaltBase preseed file
Adding the configuration change to the preseed file on the PXE server will allow all SaltBase
machines built using the PXE server to utilize the apt-cache by default.

1. Add / create the ​01proxy ​file in ​/var/www/html/saltbase_install/
2. Add the following line somewhere in the "late_commard" section at the end of the

preseed file(s):

in-target wget -P /etc/apt/apt.conf.d/ http://{{

pillar.get('PXE_DNS_NAME') }}/saltbase_install/01proxy; \

Extra Credit: Configure apache and link to apt-cache status page
With a little extra effort we can add some polish to the apt-cache server, making it easier to
access the status of apt-cache service through apache.

Replace default apache site
Replacing the default apache site will add a few small configuration changes, allowing for
ignoring of file types during a folder listing, customizing folder view options, and adding a
legitimate admin email address (we'll take advantage of the ADMIN_EMAIL variable defined
above). Save the following content to ​/srv/salt/myaptcache/000-default.conf ​.

<VirtualHost *:80>

 ServerAdmin {{ pillar.get('ADMIN_EMAIL') }}

 DocumentRoot /var/www/html

 # List of files to ignore

 IndexIgnore *.preseed

 <Directory />

 Options FollowSymLinks

 AllowOverride None

 </Directory>

 <Directory /var/www/html>

 Options Indexes FollowSymLinks MultiViews

 AllowOverride None

 Order allow,deny

 allow from all

 </Directory>

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 LogLevel warn

</VirtualHost>

This site configuration will need to be enabled on the apt-cache server. If this state changes the
apache site then apache should also be reloaded. Add this state to ​init.sls ​.

Replace the default website config

aptcache_default_site:

 file.managed:

 - name: /etc/apache2/sites-available/000-default.conf

 - user: root

 - group: root

 - mode: 644

 - source: salt://aptcache/000-default.conf

 - template: jinja

 service.running:

 - name: apache2

 - watch:

 - file: /etc/apache2/sites-available/000-default.conf

Add apt-cache status pointer
Adding a pointer which redirects directly to the apt-cache status page makes for a more
convenient user experience. In this case we'll need to add a variable for the aptcache DNS
record to the pillar and insert the corresponding jinja to the pointer file. First, save the following
content to ​/srv/salt/myaptcache/aptcache_status.html ​.

<head>

<meta http-equiv="refresh" content="0; URL='http://{{

pillar.get('APTCACHE_DNS') }}:3142/aptcache'" />

</head>

Next we'll need to add the variable to the pillar (change the DNS name to match the one created
above)

echo "APTCACHE_DNS: 'aptcache.bobbarker.com'" >>

/srv/pillar/myaptcache.sls

Finally we'll need to add a salt state to deploy the pointer file. Add this state to ​init.sls ​.

Drop in a pointer to the aptcache status page and

aptcache_pointer:

 file.managed:

 - name: /var/www/aptcache_status.html

 - user: root

 - group: root

 - mode: 644

 - source: salt://aptcache/aptcache_status.html

 - template: jinja

Clean out the document root
Lastly, we'll need to clean the ​index.html ​ out of ​/var/www/html ​ which will allow apache to
create a folder listing as the default apache view for the apt-cache server. Add this state to
init.sls ​.

Ensure the default index.html is wiped out, this should allow

apache to create a folder listing by default.

aptcache_cleanout:

 file.absent:

 - name: /var/www/html/index.html

Run a highstate to add features to the apt-cache server
1. Run the highstate

salt '*' state.highstate > ~/aptcacheinstall.log

apt-cache source

The full source of the apt-cache salt formula and associated files can be found on github:
https://github.com/love2scoot/pxesaltbase-formula/tree/master/myaptcache​.

apt-cache summary

Leveraging the deployment capacity of the PXE server, the process above helps build an
apt-cache server to provide a complementary service within the same infrastructure. This
exemplifies the benefits of the SaltBase PXE approach, showing the simplicity and power of
scaling services on top of SaltStack enabled hosts.

https://github.com/love2scoot/pxesaltbase-formula/tree/master/myaptcache

Expanding on this work
We can now look at expanding on the options of the PXE server. Each of these options will be
covered at a high level, exploring briefly the benefits they could potentially offer.

Other Linux Variants
While we have chosen to use Ubuntu as the Linux variant of choice, there are no limitations on
booting to or installing other Linux variants from the PXE server. For example, the installation
process for CentOS (RHEL) should be a simple sideways port from Ubuntu where a kickstart file
replaces the preseed file, and the salt should port over easily (if not identically). It's even
possible to install FreeBSD (I know- ​not ​a Linux variant) from an Ubuntu based PXE server.
With tftp, http, and nfs mount options installed to the PXE server by default, most installation
methods should be available without the need to dramatically modify the PXE server itself.

Targeted TFTP Boot Options
The PXE menu system offers excellent flexibility in selecting the the desired boot configuration
for the host. There may, however, be times when a subset of machines need to be booted
using a specific configuration. Using the configuration options built into tftp, single hosts or
groups of hosts can be set to directly boot to a specific configuration, circumventing the need to
select the same menu option each time. This topic is covered well on the ​syslinux.org page​.

Acronis PXE Boot
With the power to image entire systems from either local or network resources, Acronis can be a
powerful addition to the PXE server. Although not officially supported, it appears that ​some
industrious users have managed to get it working​.

Windows PE
Windows PE is a small operating system used to install, deploy, and repair Windows. In much
the same way that the Ubuntu Live Boot adds utility for Linux machines, Windows PE offers the
same benefit for Windows based hosts. Microsoft offers good documentation around Windows
PE from a ​great introductory page​ to specific documentation for ​implementing Windows PE on a
PXE server​.

https://docs.microsoft.com/en-us/windows/deployment/configure-a-pxe-server-to-load-windows-pe
http://www.syslinux.org/wiki/index.php?title=PXELINUX#Configuration
https://docs.microsoft.com/en-us/windows/deployment/configure-a-pxe-server-to-load-windows-pe
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-intro
https://forum.acronis.com/forum/acronis-true-image-home-forum-older-versions/pxe-boot-possible
https://forum.acronis.com/forum/acronis-true-image-home-forum-older-versions/pxe-boot-possible

Where to now?
Looking beyond the PXE server, we can consider other technologies which could provide
complementary capabilities and allow for even greater levels of automation.

gitfs Integration with a Local git Server
While beyond the scope of this section, a great way to further streamline development is to
integrate git server credentials directly into SaltBase machines produced by the PXE server.
This can be realized by pre-populating the ​gitfs_remotes ​file on the PXE server (by default, this
file includes a commented out example including a sample URL, user, password, and root path).
All SaltBase machines built using this server will then inherit the ability to seamlessly use the
referenced git server as a gitfs source, allowing users to immediately leverage formulas which
can be standardized across the organization.

For example, if your organization has a an apt-cache server (like the ​example above​), this
configuration can be built as a salt formula (let’s call it ​myaptcache.sls ​), committed to a
private git server, and therefore made available to new SaltBase machines by simply adding

 ​ - myaptcache

to the top.sls file. When a high state is run, Salt will use the formula directly from the git server.
This allows common configuration tasks in an organization to be centralized into a single
common source repo and easily leveraged across all SaltBase machines.

pygit2 solution
While it is not a problem to ​compile from source​, it would certainly be easier to install pygit2 (and
dependencies) from public package repositories if http support was baked in. In an ideal case,
the maintainer of the package would include both ssh and http capabilities in pygit2 in the future.
If this comes to pass it will obviate the complexity associated with the compilation solution
required at this time.

build git from a formula on a SaltBase machine
If the benefits espoused above for a private git server are attractive, a ​gitlab-formula​ is available
currently on github. This formula will install gitlab and can be leveraged directly from a SaltBase
machine. Alternately a ​gitolite-formula​ is available as well as a plain ​git-formula​.

https://github.com/saltstack-formulas/gitlab-formula
https://github.com/saltstack-formulas/gitolite-formula
https://github.com/saltstack-formulas/git-formula

Migrating to a central salt-master
SaltBase machines are ​self mastered minions​. This allows for flexible configuration options for
the host, but scaling this infrastructure requires some additional work; enter a ​central
salt-master​. Once a central master is built and configured, all Salt enabled hosts can be pointed
to this master for centralized, coordinated configuration. In this way, an infrastructure can be
easily scaled up with centralized configuration of nodes on a given network.

To enable this feature on SaltBase machines requires (2) changes: 1) the local DNS server
requires a host called “salt” (excluding DNS suffix) which points to the salt-master and 2) the
“salt” entry in ​/etc/hosts​ needs to be removed. Without a hosts file entry, machines will reach
out to the local DNS server for resolution of the “salt” name whereupon the salt-master IP will be
returned and the minion will attempt to contact the salt-master. Once communication between
the minions and the central master is established, the salt-master will need to accept the keys
for the connected minions. These steps will enable the salt-master to apply configuration
changes to minions which match the criteria specified by the salt-master in top.sls.

Layering Containerization
DevOps has fully embraced containerization solutions (like Docker) to streamline the
development process. From a developer’s standpoint this approach allows for rapid iteration,
dramatic scaling, and more. When moving from development to production, a developer may
want to output an application as a container. Reflexively, Operations (IT) will need to provide a
target for this container on the production server. Current standards often suggest that
production environments use a 1:1 correspondence between a container and the underlying
kernel as this minimizes the chance that any one container will affect any other in production.

When considering these scenarios, the simple solution is to build a standard containerized
configuration using SaltStack. While Docker (or similar) would live directly on top of an OS, its
configuration would be applied by salt formula, ensuring consistency across both development
and production environments. As a launching point, github hosts a ​docker-formula​.

https://github.com/saltstack-formulas/docker-formula

The Road Ahead
Cresting a hill allows you to look back at all you’ve accomplished while giving you a greater
perspective on those challenges which lie ahead. My hope is that ​Getting DevOps off the
Ground​ helps deliver on the promise of automation, and is a foundation on which further gains
in automation and efficiency can be built. Over the years, I have benefitted immensely from the
generosity of those who have taken the time to share ideas and solutions on forums, subreddits,
and within documentation. I’m hoping that this, at least in some small way, gives back to the
community to which I have borrowed so much.

Gratitude
➢ Thanks to Man-Yee for helping isolate the pygit2 bug

➢ Thanks to a great group of peers, coworkers, friends, and family who volunteered their time
to help review this work

➢ Thanks to Trevor for suggesting ​The Phoenix Project​, a great work of fictionalized nonfiction.

https://www.barnesandnoble.com/w/the-phoenix-project-gene-kim/1115141434

Appendix A: Detailed Breakdown of Helper Scripts
Added to each SaltBase machine deployed from the PXE server, the (3) helper scripts simplify
some of the more common tasks required for initial configuration of deployed hosts. In this
appendix, each of these (3) scripts will be broken down to help the reader understand the
configuration changes being made in each case.

enable_ssh.sh

Analysis of enable_ssh.sh
By default, ssh access for the root user is not allowed in Ubuntu v14.04+. The enable_ssh.sh
script attempts to complete (3) major actions:

● Installation of the openssh-server on the host
● Altering of the openssh-server configuration to allow for ssh access to root
● A restart of the openssh-server service if alterations to the configuration have been

made

Additionally, results are reported back to the user, with one of three outcomes:

● No change required
● Enabling of ssh succeeded
● Something went wrong

Some additional points may be relevant here:

● Although the line ​allowing ​ssh access for the root user is the same between Ubuntu
14.04 and 16.04, the line ​restricting ​access is different. As such, we first search for an
allowed state using ​if ​and ​grep "^PermitRootLogin yes" ​. If this is not found,
we search for the line with a wildcard using ​elif ​and ​grep
"^PermitRootLogin.*" ​. We assume if this line is present that it is a restriction line
and we replace this entire line using the ​sed ​command (listed below).

● This script works for Ubuntu versions 14.04 and 16.04, but an additional case using
else ​was built into the script such that if both the ​if ​and ​elif ​conditionals fail, that a
failure state will be returned to the user. This would most likely be due to a change in
the openssh-server configuration file and a change to the script would then be necessary
in order to enable ssh access for root. This ​else ​conditional was added to ensure that
the script did not silently fail.

Full source of enable_ssh.sh

#!/bin/bash

apt-get install -y openssh-server

if (grep "^PermitRootLogin yes" /etc/ssh/sshd_config) # Format

with root SSH enabled

then

echo ""

echo "No change required: SSH appears to already be enabled

for root"

echo ""

elif (grep "^PermitRootLogin.*" /etc/ssh/sshd_config) # If it is

present at the beginning of the line, but not set to yes, we assume

it is restricted

then

sed -i "s/^PermitRootLogin.*/PermitRootLogin yes/g"

/etc/ssh/sshd_config

 service ssh restart

echo ""

echo "SSH enabled for root"

echo ""

else # Something went wrong

echo ""

echo "There was a problem when attempting to enable SSH access

for the root user"

echo ""

fi

The source of enable_ssh.sh can also be found on github:
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase
_install/enable_ssh.sh​.

https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase_install/enable_ssh.sh
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase_install/enable_ssh.sh

newsalthostname.sh

Analysis of newsalthostname.sh
While changing a hostname on linux is only a matter of manipulating the contents of
/etc/hostsname, completing this task on a self-mastered salt minion requires some additional
logic:

● The new hostname is applied to /etc/hostname
● The new hostname is applied to /etc/salt/minion_id
● The new hostname is applied to /etc/hosts
● The salt-key associated with the old hostname must be deleted
● The salt-minion must recognize the new minion_id
● The new minion_id (and salt key) must be recognized by the salt-master
● The salt-master must accept the new salt-key
● The networking subsystem must be restarted to associate with the new hostname

Implementing these steps in a script is fairly straightforward:

● The script first gathers the hostname from the user and allows the user to confirm their
choice.

● The steps above are then completed using a combination of echo, sed, salt-key, and
service commands.

● Results are displayed for the user to verify the hostname change was completed for salt
● A message requesting a reboot for process completions is echoed to the user.

Full source of newsalthostname.sh

#!/bin/bash

Get the new hostname

echo "Enter the new hostname followed by [ENTER]:"

read newhostname

Confirm the hostname

while true; do

 read -p "Is $newhostname the new hostname you wish to use?

(y/n)" confirm

 case $confirm in

 [Yy]*) break;;

 [Nn]*) echo "Aborting..."; exit;;

 *) echo "Please answer yes or no.";;

 esac

done

Apply the hostname including updating the salt minion_id

echo $newhostname > /etc/hostname

echo $newhostname > /etc/salt/minion_id

sed -i "s|127.0.1.1.*|127.0.1.1 $newhostname salt|g"

/etc/hosts

---Completing the steps for the changes to salt

First, we need to delete the old key (all keys actually) because

it is associated with the old name

salt-key -y -D

Restarting the minion service will grab the new minion_id

service salt-minion restart

displaying the list of all keys will force the master to see the

new hostname under unaccepted keys

salt-key -L

We auto-accept the new key and minion name

salt-key -y -A

We output the list of keys to verify the key was properly

accepted

salt-key -L

We remind the user to reboot the machine to apply the change

echo ""

echo "*** Please reboot this machine to complete the hostname

change"

The source of newsalthostname.sh can also be found on github:
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase
_install/newsalthostname.sh​.

https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase_install/newsalthostname.sh
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase_install/newsalthostname.sh

setupnetwork.sh

Analysis of setupnetwork.sh
The setupnetwork.sh script attempts to simplify the process of changing the network
configuration of an Ubuntu Server OS. It provides the following features:

● a simple wizard which allows the user to easily change between DHCP and static IP
configurations

● validation of all IP addresses to ensure they conform with IPv4 address standards
● feedback to the user on relative success or failure of the procedures

Manually changing network configurations on an Ubuntu Server can be a ​relatively ​simple task,
but automating this process to work across different versions of Ubuntu can be a challenge.
Starting in Ubuntu v15.10, the networking system began to use "Predictable Network Interface
Names". This results in version 14.04 and 16.04 using different naming standards for Ethernet
adapters within the ​/etc/network.interfaces ​file. As a result, additional complexity is
required in order to derive the name of the active Ethernet adapter and correctly apply network
changes across Ubuntu versions. After an echoed intro, this is the very first task of the script
starting at the comment:

Figure out the name of the Ethernet adapter

In Step 1, the user is presented with a menu which allows a selection of DHCP or Static IP. If
any other input is specified the wizard will report an invalid option and ask again.

● In the case of DHCP, a simple configuration is built using the ​basicoutput () ​ and
dhcpoutput () ​ functions, the config is written to the interfaces file, the Ethernet
adapter is restarted, and the script exits with success.

● In the case of Static IP, the wizard then continues to Step 2 and begins to query the user
for the required inputs

In Step 2, the user will be asked for the static IP address. The input is sent to the ​isipvalid
() ​function, where it is checked for compliance with IPv4 address standards. If the IP is not
valid, the wizard will report invalid input and repeat the step.

In Step 3, the user will be asked to specify the size of the subnet. A helpful table with key is
displayed, allowing the user to select an option by subnet size. The input is checked and if
invalid the subnet size will be requested again.

In Step 4, the user will be asked for the IP of the gateway. The input is sent to the ​isipvalid
() ​function, where it is checked for compliance with IPv4 address standards. If the IP is not
valid, the wizard will report invalid input and repeat the step.

In Step 5, the user will specify the DNS search domain. If the user skips input on this step, the
wizard will pass a # value for this step so that variable numbering is maintained.

In Step 6a, the user will specify the IP of the primary DNS nameserver. The input is sent to the
isipvalid () ​function, where it is checked for compliance with IPv4 address standards. If
the IP is not valid, the wizard will report invalid input and repeat the step.

In Step 6b, the user will specify the IP of the secondary DNS nameserver. If the user skips
input on this step, the wizard will pass a # value for this step so that variable numbering is
maintained. If the user passes a value, the input is sent to the ​isipvalid () ​function, where
it is checked for compliance with IPv4 address standards. If the IP is not valid, the wizard will
report invalid input and repeat the step.

Once all input is complete, the wizard will echo the configuration as specified by the user and
ask for confirmation.

● If the user specified an invalid choice, the wizard will report such and repeat the
confirmation request.

● If the user rejects the configuration, the script exits reporting an abort.
● If the user accepts the configuration, the configuration is built using the ​basicoutput

() ​ and ​staticoutput () ​ functions, the config is written to the interfaces file, the
Ethernet adapter is restarted, the network configuration is echoed to the user, and the
script exits with:

echo "Check the adapter information above. If the IP has *not*

changed, you will need to reboot in order to apply the change

to a static IP"

Full source of setupnetwork.sh

#!/bin/bash

#---CONSTANTS

outputfile="/etc/network/interfaces"

#---FUNCTIONS

basicoutput () # All interface files start with this

{

echo "# This file describes the network interfaces available

on your system"

echo "# and how to activate them. For more information, see

interfaces(5)."

echo ""

echo "# The loopback network interface"

echo "auto lo"

echo "iface lo inet loopback"

echo ""

echo "# The primary network interface"

}

dhcpoutput () # Output for DHCP configuration

{

echo "# DHCP Configuration"

echo "auto ${ethname}"

echo "iface ${ethname} inet dhcp"

}

staticoutput () # Output for Static IP configuration

{

echo "# Static IP in WDC"

echo "auto ${1}"

echo "iface ${1} inet static"

echo " address ${2}"

echo " netmask ${3}"

echo " network "

echo " broadcast "

echo " gateway ${4}"

echo " dns-search ${5}"

echo " dns-nameservers ${6} ${7}"

}

isipvalid () # Check to see if the IP is valid

{

 separator="\." # Make sure to escape the .

 dotcount=$(grep -o "$separator" <<< "$1" | grep -c .) # Check

for extra octets

 valid=`grep -oP

'\b(?:(?:25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])[.](?:25[

0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])[.](?:25[0-5]|2[0-4][

0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])[.](?:25[0-5]|2[0-4][0-9]|1[0-9][

0-9]|[1-9][0-9]|[0-9]))\b' <<< "$1"`

 if ["$dotcount" -eq 3] && ["$valid"]

 then

 return 0 # We have a valid IP address

 else

 return 1 # Not a valid IP

 fi

}

#---START

Intro

echo "This wizard will help you change the network configuration on

your machine"

Figure out the name of the Ethernet adapter

if (grep eth0 $outputfile)

then

ethname="eth0" #Found eth0

else

ethname=`ifconfig | grep -w -m 1 en.... | awk '{print $1;}'`

#Derived Ethernet interface name

fi

Configure as Static or DHCP?

echo ""

echo "---STEP 1: STATIC vs DHCP"

while true; do

 echo ""

 echo "How would you like to configure adapter ${ethname}?"

read -r -p "(S)tatic IP / (D)HCP [S/D] " answer

case "${answer}" in

(s* | S*)

break

;;

(d* | D*)

basicoutput > $outputfile

dhcpoutput >> $outputfile

ifdown ${ethname}

ifup ${ethname}

echo ""

echo "---IP configuration change complete"

exit 0

;;

(*)

echo "Unknown option: ${answer}"

;;

esac

done

OK, configure as static

echo ""

echo "---STEP 2: IP ADDRESS"

while true; do

 echo ""

 read -r -p "Please supply the desired IP address (no leading

zeros): " myip

 echo "Checking IP..."

 isipvalid $myip

 if [$? -eq 0]

 then

 echo "That looks like a valid IP"

 break

 else

 echo "$myip is not a valid IP address" # Something is wrong

with the octets

 fi

done

We need a subnet now

echo ""

echo "---STEP 3: SUBNET MASK"

while true; do

 echo ""

 echo "-------------------------------------"

 echo "| Bits | Mask | Hosts |"

 echo "-------------------------------------"

 echo "| /8 | 255.0.0.0 | 16777214 |"

 echo "| /9 | 255.128.0.0 | 8388606 |"

 echo "| /10 | 255.192.0.0 | 4194302 |"

 echo "| /11 | 255.224.0.0 | 2097150 |"

 echo "| /12 | 255.240.0.0 | 1048574 |"

 echo "| /13 | 255.248.0.0 | 524286 |"

 echo "| /14 | 255.252.0.0 | 262142 |"

 echo "| /15 | 255.254.0.0 | 131070 |"

 echo "| /16 | 255.255.0.0 | 65534 |"

 echo "| /17 | 255.255.128.0 | 32766 |"

 echo "| /18 | 255.255.192.0 | 16382 |"

 echo "| /19 | 255.255.224.0 | 8190 |"

 echo "| /20 | 255.255.240.0 | 4094 |"

 echo "| /21 | 255.255.248.0 | 2046 |"

 echo "| /22 | 255.255.252.0 | 1022 |"

 echo "| /23 | 255.255.254.0 | 510 |"

 echo "| /24 | 255.255.255.0 | 254 |"

 echo "| /25 | 255.255.255.128 | 126 |"

 echo "| /26 | 255.255.255.192 | 62 |"

 echo "| /27 | 255.255.255.224 | 30 |"

 echo "| /28 | 255.255.255.240 | 14 |"

 echo "| /29 | 255.255.255.248 | 6 |"

 echo "| /30 | 255.255.255.252 | 2 |"

 echo "-------------------------------------"

 echo ""

read -r -p "Please supply the bits of the desired subnet (see

table above): " mysub

 case "${mysub}" in

(/8 | 8) mymask="255.0.0.0"; break;;

(/9 | 9) mymask="255.128.0.0"; break;;

(/10 | 10) mymask="255.192.0.0"; break;;

(/11 | 11) mymask="255.224.0.0"; break;;

(/12 | 12) mymask="255.240.0.0"; break;;

(/13 | 13) mymask="255.248.0.0"; break;;

(/14 | 14) mymask="255.252.0.0"; break;;

(/15 | 15) mymask="255.254.0.0"; break;;

(/16 | 16) mymask="255.255.0.0"; break;;

(/17 | 17) mymask="255.255.128.0"; break;;

(/18 | 18) mymask="255.255.192.0"; break;;

(/19 | 19) mymask="255.255.224.0"; break;;

(/20 | 20) mymask="255.255.240.0"; break;;

(/21 | 21) mymask="255.255.248.0"; break;;

(/22 | 22) mymask="255.255.252.0"; break;;

(/23 | 23) mymask="255.255.254.0"; break;;

(/24 | 24) mymask="255.255.255.0"; break;;

(/25 | 25) mymask="255.255.255.128"; break;;

(/26 | 26) mymask="255.255.255.192"; break;;

(/27 | 27) mymask="255.255.255.224"; break;;

(/28 | 28) mymask="255.255.255.240"; break;;

(/29 | 29) mymask="255.255.255.248"; break;;

(/30 | 30) mymask="255.255.255.252"; break;;

(*) echo "Unknown option: ${mysub}";;

esac

done

Get the gateway

echo ""

echo "---STEP 4: GATEWAY"

while true; do

 echo ""

 read -r -p "Now we'll need the IP Address of the gateway (no

leading zeros): " mygate

 echo "Checking IP..."

 isipvalid $mygate

 if [$? -eq 0]

 then

 echo "That looks like a valid IP"

 break

 else

 echo "$mygate is not a valid IP address" # Something is

wrong with the octets

 fi

done

Get the dnsdomain

echo ""

echo "---STEP 5: DNS Domain(s)"

echo "(Optional, but suggested)"

echo 'Example: "bobbarker.com"'

echo ""

read -r -p "Please provide a dns search domain: " dnsdomain

if [-z "$dnsdomain"]

then

 dnsdomain="#" # Passing a hash to retain the numbering of

passed vales to the static IP function

fi

#Get the DNS Server IP

echo ""

echo "---STEP 6a: DNS NAMESERVER"

while true; do

 echo ""

 read -r -p "We'll need the IP Address of the local DNS Server

(no leading zeros): " dnsnameserver1

 echo "Checking IP..."

 isipvalid $dnsnameserver1

 if [$? -eq 0]

 then

 echo "That looks like a valid IP"

 break

 else

 echo "$dnsnameserver1 is not a valid IP address" #

Something is wrong with the octets

 fi

done

#Get the DNS Server IP

echo ""

echo "---STEP 6b: DNS NAMESERVER (Secondary)"

while true; do

 echo ""

 read -r -p "Secondary DNS Server IP / Enter to skip (no leading

zeros): " dnsnameserver2

 if [-z "$dnsnameserver2"]

 then

 dnsnameserver2="#" # Passing a hash to retain the numbering

of passed vales to the static IP function

 break

 fi

 echo "Checking IP..."

 isipvalid $dnsnameserver2

 if [$? -eq 0]

 then

 echo "That looks like a valid IP"

 break

 else

 echo "$dnsnameserver2 is not a valid IP address" #

Something is wrong with the octets

 fi

done

Confirm the config

while true; do

 echo ""

 echo "---Validate the Configuration----"

 basicoutput

 staticoutput ${ethname} ${myip} ${mymask} ${mygate}

${dnsdomain} ${dnsnameserver1} ${dnsnameserver2}

 echo "---------------------------------"

 echo ""

 read -r -p "Would you like to apply this configuration? (Y/N):

" pleaseconfirm

case "${pleaseconfirm}" in

(y* | Y*)

 # Output Static IP settings to file

 basicoutput > $outputfile

 staticoutput ${ethname} ${myip} ${mymask} ${mygate}

${dnsdomain} ${dnsnameserver1} ${dnsnameserver2} >> $outputfile

 ifdown ${ethname}

 ifup ${ethname}

 ifconfig ${ethname}

 echo ""

 echo "*********"

 echo "Check the adapter information above. If the IP

has *not* changed, you will need to reboot in order to apply the

change to a static IP"

 break

;;

(n* | N*)

 echo ""

 echo "---Aborting configuration"

exit 1

;;

(*)

echo "Unknown option: ${answer}"

;;

esac

done

echo ""

echo "---IP configuration change complete"

The source of setupnetwork.sh can also be found on github:
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase
_install/setupnetwork.sh​.

https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase_install/setupnetwork.sh
https://raw.githubusercontent.com/love2scoot/pxesaltbase-formula/master/pxesaltbase/saltbase_install/setupnetwork.sh

Appendix B: Quick SaltStack Primer
Although plenty of guides on using SaltStack exist, the documentation below provides a simple
primer for understanding the basic concepts of the tool.

Masters and Minions

Defining these roles
Configuration of machines using SaltStack follow the association of masters and minions.

● Machines that are being configured are ​minions​.
○ Minions are authenticated to their master
○ Minions report back configuration results to their master
○ Minions can only associate with a single master at a time

● Machines that are applying the configuration are ​masters

○ Masters initiate a configuration in one or more minions
○ Masters centralize reporting from their associated minions
○ Masters can associate with one or more minions
○ Masters can apply configurations to a subset of their

minions through conditional statements based on a wide
variety of data. This allows masters to easily apply
configurations to a targeted subset of associated minion
machines.

Self Mastered
Looking at the roles above, it would be easy to assume that
master and minion roles require separate machines, but that is
not the case. The simplest approach to developing with salt is
to keep both roles on the same machine in a configuration
called ​self-mastered​. Having the master and minion on the
same machine allows for rapid development of configuration
code by allowing development without the need to rely on any
external sources.

Centrally Mastered
After the initial configuration of a minion is complete, the machine can remain self mastered, or
can be associated with a new master. In some cases, the association with a centralized master
can be advantageous. If, for example, a pool of identically configured minions are required for
a project, having the minions associated with a centralized master will allow them to remain in
sync.

Although outside the scope of this document, it is i​mportant to note how salt can be leveraged
beyond the configurations detailed herein. The documentation from this point describes salt
from within the context of a self mastered approach.

Structures
The source for SaltStack is essentially broken into (2) main structures, Salt and Pillars.

Salt
The source code that describes the changes to apply to the minion is called ​salt​. This source

is organized into files called formulas.

Formulas

Salt ​formulas​ are files that contain one or more states to apply to a minion.

Formulas contain one or more changes (or states) that will be applied to the minion. The
developer chooses how to build these formulas by segmenting these states into formulas. While
this is somewhat arbitrary, it’s a good idea to consider how the code may be maintained going
forward when making this determination.

For example, if the goal is to configure a minion as a web server, all states to configure this
machine can be collected within a single formula. However, the developer may want to
consider segmenting these states up into several different formulas like apache_changes,

php_changes, http_content_export, etc. each of which contain a subset of the configuration
states.

States
Unlike scripting languages which will run in their entirely on each launch, Salt leverages a
concept known as ​states​. States allow for a conditional check of the minion before attempting
to apply the configuration change. If the state has already been applied, no action is taken and
the minion reports back that the state was already correctly configured. If not, application of the
state is attempted and the success or failure is reported.

Within a formula, all states must be uniquely named. If, for example, a state was named
file_owner_change:​ and another owner change were required within the same formula, the state
could simply be built using a different name; for example: ​file_owner_again:​. Naming of states
inside a formula is arbitrary, but it's probably a good idea to imply some description of the state's
functionality in the name.

States are applied to the minion in the order in which they appear in the formula. Exceptions
exist, often based on dependencies that may be applied between states.

Salt Examples
For example, let's say we need to change the owner and permissions on a specific file on the
minion. In bash this could be represented by the commands:

chown root:root /etc/cron.daily/backup

chmod 644 /etc/cron.daily/backup

Implemented in salt, we could build a simple formula with a single state called
sample_file_permission:​. This state would leverage the file.managed formula and use input
parameters for the path to the file and the desired permissions.

Here's how it might look:

change owner and permissions on backup

sample_file_permission:

 file.managed:

 - name: /etc/cron.daily/backup

 - user: root

 - group: root

 - mode: 644

This state will check to ensure that the file exists, has the correct ownership, and the correct
permissions assigned. If not, it will attempt to apply changes to the file to bring it into this

configuration. Note that both bash commands are represented here in a single state. This
source could then be saved as a file called “sample.sls”, and would stand as its own formula.

Let's look at more advanced example:

Export a file from SVN

svn_example_export:

 svn.export:

 - name: https://svn.bobbarker.com/SANDBOX/trunk/test.txt

 - target: /tmp/test.txt

 - username: bbarker

 - password: PriceIsWrong!

 - force: true

 - overwrite: true

 - trust: true

In this example we can see that salt functionality can extend beyond simple OS changes to
include functions such as interfacing with an SVN server. This source can then be saved as a
file called ​svnexport.sls ​ as its own formula.

This example also shows one of the common downsides to interpreted code, namely inclusion
of secure data within the source. SaltStack makes a provision for this, allowing storage of more
sensitive data within a ​pillar​.

Pillars
A ​pillar​ allows for storage of sensitive data within a structure external to our salt. In their most
basic form, pillars are simply a list of variables that allow for insertion into the salt when the salt is
interpreted. Note that the use of pillars is optional.

Pillar Examples
Following from our previous example, the more secure way of writing the above state would be
to separate out the username and password into a pillar and replace it with some simple code
that tells salt to go look for the data in the pillar (using Jinja).

The pillar would look like:

SVN_USERNAME: "bbarker"

SVN_PASSWORD: "PriceIsWrong!"

The resulting salt would appear as:

Export a file from SVN

svn_example_export:

 svn.export:

 - name: https://svn.bobbarker.com/SANDBOX/trunk/test.txt

 - target: /tmp/test.txt

 - username: {{ pillar.get('SVN_USERNAME') }}

 - password: {{ pillar.get('SVN_PASSWORD') }}

 - force: true

 - overwrite: true

 - trust: true

Note that these files would both be saved as “svnexport.sls” (see ​file topology​ below for more
information)

At this point, the salt could be securely checked into a repository. The pillar, while it ​could​ be
checked into a repository as is, should have the two variables replaced with examples and then
committed to the repo.

For example:

SVN_USERNAME: "svnuser"

SVN_PASSWORD: "changeme"

In this way, secure data is never committed and all variables for a given salt are now centralized
within the pillar.

Content
Inside of our salt and pillars is our source, which is segregated into formulas which contain
states.

Although the examples above use the general structure:

statename:

 function:

 - parameters

States can also be named in a more direct manner:

parametername:

 function

If, for example, we want to touch a file within the minion:

create_test:

 file.touch:

 - name: /tmp/test.txt

or we could use the short form:

/tmp/test.txt:

 file.touch

In certain cases this works very well. The only downside here is the state naming limitation
noted above. Let's say we wanted to test for file existence within the same formula. We could
use:

test_exists:

 file.exists:

 - name: /tmp/test.txt

but we could *not* name the state:

/tmp/test.txt:

 file.exists

since we already will have a state named /tmp/test.txt: using the short form above.

File Topology
Now that we have a concept of how the salt and pillar are formatted and interact, we need
details on how to store this source within the topology required by SaltStack.

Root Folders
Salt can be configured to use any folder as the container for either salt or pillars, but best
practices put these folders in:

/srv/salt

/srv/pillar

top file
The salt and pillar folders will each need to have a top file. This top file, named top.sls,
describes how formulas are applied to minions. For our purposes, we will be taking the most
basic example that states are applied to ​all​ minions, which for a self mastered machine means
states apply only to itself.
The top.sls file must be formatted in a very specific way. Here's an example of a top.sls file
which includes a single salt file that enables ntp on a minion:

base:

 '*':

 - timesync

Each salt formula which should be run on the minion must be included on a line in the top.sls
file. From our first example above, not all salt files need to have a corresponding pillar file, so it's
possible to have an entry in the salt top.sls but not in the pillar top.sls. It is essential, however,
to ensure that a top.sls file exists within the pillar folder if there are calls to the pillar within the
salt source. If a pillar is not required, the top.sls file in /srv/pillar should be omitted.

naming salt and pillar files
From our sample top.sls above, we see that a formula called "timesync" should be applied to the
minion. There are two ways to name formulas within salt:

● as a standalone .sls file
● as a folder

Standalone
For the simplest formulas, we can use a simple .sls file. From the example above, the file would
be named timesync.sls and be contained in the root of the salt folder. So the full path would be:

/srv/salt/timesync.sls

Pillars will always appear as a simple .sls file and have the same name as the salt file / folder. If
the timesync.sls salt formula above made calls to the pillar, the corresponding pillar would have
the same name, but be located in the root of the pillar folder. So the full path would be:

/srv/pillar/timesync.sls

Folder
In some cases we will want use a folder for the formula instead of the simple .sls file. This is
typically due to the inclusion of external files that should be included along with the salt
formulas. In this case the nomenclature is a little different: the folder takes the name of the
formula and the salt source is put into a file named init.sls within that folder. So the full path
would be:

/srv/salt/timesync/init.sls

external file inclusion
As mentioned above, there are times when external files should be included along with a
formula. This typically manifests as files that should be inserted into the minion when the states
are applied.

Using our first example, let's say that ​/etc/cron.daily/backup​ does not yet exist, but we want to
create it on the minion at the time we apply the state. In this case we would use the same
file.managed​ function but grab the file from the same folder.

The state could look like:

create_backup_file:

 file.managed:

 - name: /etc/cron.daily/backup

 - user: root

 - group: root

 - mode: 644

 - source: salt://sample/backup

and the folder would have both the formula and the file. The full paths would be

/srv/salt/sample/init.sls

/srv/salt/sample/backup

Taking these ideas one step further, it is possible to include the Jinja script snippets ​in the
external files​. In this case, let’s say we want to change how the backup script works, allowing it
to use a database name specified in the pillar. The backup file could have a snippet:

databasename="{{ pillar.get('MY_DATABASE') }}"

The pillar file would then need to have the associated value. The pillar could look like:

MY_DATABASE: "SQLTEST"

The only change required would be an additional parameter on the file.managed function telling
salt to interpret the attached file as containing Jinja. The new state could look like:

create_backup_file:

 file.managed:

 - name: /etc/cron.daily/backup

 - user: root

 - group: root

 - mode: 644

 - source: salt://sample/backup

 - template: jinja

Note the "template" line. The full paths of all files for this approach would be:

/srv/salt/top.sls

/srv/salt/sample/init.sls

/srv/salt/sample/backup

/srv/pillar/top.sls

/srv/pillar/sample.sls

Where:

/srv/salt/top.sls Top file with a single entry for sample, the only
formula we are applying.

/srv/salt/sample/init.sls

The state described above which pulls the file
“backup” from the sample folder and writes it to the
target path, inserting the value from the pillar
specified by the Jinja, applying the ownership and
permissions to the file at the same time.

/srv/salt/sample/backup

The file which will be written to the target path by the
formula. This file contains Jinja, which will have
values inserted from the pillar at the time the file is
written to the target path by the salt state.

/srv/pillar/top.sls Top file with a single entry for sample, the only pillar
we are using.

/srv/pillar/sample.sls The pillar file containing the database value to insert
into the backup file when written to the target path

Formatting
Salt requires that content adhere to specific formatting rules. Much like other scripting and
programming languages, a small mistake will break the formulas and not allow the states to be
applied.

YAML
Salt uses ​YAML​ which requires specific indent spacing, usage of colon, and usage of dashes.
Note in all the examples above:

● Each "level" of states are indented by two additional spaces
● A colon is required to list elements under an line
● A dash with space after it is required for listed parameters

These are by no means the only requirements of salt, but should be sufficient for this document.

Jinja
The ​Jinja​ code snippets use double curly brackets separated by spaces to encapsulate the
code. You can see examples of this above such as

databasename="{{ pillar.get('MY_DATABASE') }}"

Also note that quotation marks cannot be nested if they are the same kind. If nested quotes are
needed, single and double quotes can be nested within one another.

Salt Development Backgrounder
This section touches on code reuse as well as some subtleties around the development of salt.

Leveraging Code Reuse
One of the great benefits of using Salt is the low effort required to leverage the work of others.
With the ability to pull salt formulas from varied sources, development can be modularized and
easily replicated. However, unless the developer is aware of what is already available, there will
be little opportunity to leverage this advantage. A great way to become acquainted with existing
formulas is to simply browse repositories. Once you identify a promising formula, simply add it to
your top file and gitfs_remotes and give it a try. An example of this approach can be seen in
Part I above in ​Apply a state from a gitfs source​.

Understanding Salt Hierarchy
Salt uses a relatively simple structure for execution order and naming conventions. This
information is important to cover in order to help avoid scenarios where a potential conflict may
occur.

Formula Execution Order
A salt formula is interpreted using the order in which the states appear. For example:

Install my desired packages

install_my_packages:

 pkg.installed:

 - refresh: True

 - pkgs:

 - subversion

 - htop

Enable the local apt cache

local_apt_cache:

 file.managed:

 - name: /etc/apt/apt.conf.d/01proxy

 - user: root

 - group: root

 - mode: 644

 - source: salt://localaptcache/01proxy

Refresh package manager

update_os:

 pkg.uptodate:

 - refresh: true

● First, the ​install_my_packages ​ state would run and install subversion and htop
● Second, the ​local_apt_cache ​ state would run, defining the apt cache proxy
● Third, the ​update_os ​ state would run, performing an apt update / upgrade

This execution order is the same every time the salt is interpreted. The only exception to this
execution order is when states use requisites, allowing logical dependencies to be built between
states. You can see details on this topic in the ​​SaltStack Documentation

State Name Conflicts
No two states can be named the same. For example:

Install my desired packages

install_my_packages:

 pkg.installed:

 - refresh: True

 - pkgs:

 - subversion

Install more packages

install_my_packages:

 pkg.installed:

 - refresh: True

 - pkgs:

 - htop

This would cause an error to be thrown and the salt would not be executed. If, however, the
second state was renamed from ​install_my_packages ​ to ​install_more_packages ​ this
would resolve the conflict.

Formula Name Conflicts
No two formulas can be named the same. For example, if your local salt folder contained a
formula named ​mysettings.sls ​ and this same filename was also contained in a connected
gitfs repository, an error to be thrown and the salt would not be executed. It is important to
ensure that all formula names are without conflict across the entire state tree (the combined salt
across all file sources). This would typically come into play once a new gitfs source is added,
whereupon new formulas would be added to the state tree.

https://docs.saltstack.com/en/latest/ref/states/requisites.html

